数据结构之树
作者:互联网
数据结构之树
定义
树是一种数据结构,它是由n(n>=1)个有限结点组成一个具有层次关系的集合
应用:
文件夹的分类创建与快速查找
#include<stdio.h>
#include<malloc.h>
#include<graphics.h>
#include<string.h>
#define MaxSize 100
typedef char ElemType;
typedef struct node{
ElemType data;
int x,y,ltag,rtag,pathlen;
struct node *lchild;
struct node *rchild;
}BTNode;
BTNode *CreateBTNode();
int BTNodeDepth(BTNode *);
void DispBTNode(BTNode *);
void PreOrder(BTNode *);
void InOrder(BTNode *);
void PostOrder(BTNode *);
void LevelOrder(BTNode *);
void LeafNodes(BTNode *);
void FindNodes(BTNode *,ElemType);
void PathLeaf(BTNode *,BTNode *,int);
void InitPreOrderThread(BTNode *);
BTNode *CreatePreOrderThread(BTNode *);
void PreOrderThread(BTNode *);
void InitInOrderThread(BTNode *);
BTNode *CreateInOrderThread(BTNode *);
void InOrderThread(BTNode *);
void InitPostOrderThread(BTNode *);
BTNode *CreatePostOrderThread(BTNode *);
void PostOrderThread(BTNode *);
void DestroyBTNode(BTNode *);
void DeleteNode(BTNode *,ElemType,BTNode *[],int);
void InsertNode(BTNode *,ElemType,ElemType,ElemType);
BTNode *pre;
int s = 0;
int main(){
BTNode *b;
int a;
b=NULL;
b=CreateBTNode();
a = BTNodeDepth(b);
if(a>5){
printf("The hight of btree can not over 5");
return 0;
}
return 0;
}
BTNode *CreateBTNode(){
BTNode *b=NULL,*p=NULL;
FILE *fp;
char str[MaxSize],ch;
BTNode *st[MaxSize];
int j,k,i = -1,x=0;
fp = fopen("tree.txt","r");
while(!feof(fp)){
str[x]=fgetc(fp);
x++;
}
for(j=0;str[j];j++){
ch = str[j];
switch(ch){
case '(':i++;st[i] = p;k = 1;break;
case ',':k = 2;break;
case ')':i--;break;
case ' ':break;
default:
p = (BTNode *)malloc(sizeof(BTNode));
p->data = ch;
p->lchild = p->rchild = NULL;
p->x = p->y = 0;
p->ltag = p->rtag = 0;
if(b==NULL)
b = p;
else{
switch(k){
case 1:st[i]->lchild = p;break;
case 2:st[i]->rchild = p;break;
}
}
}
}
return b;
}
int BTNodeDepth(BTNode *b){
int lchilddep,rchilddep;
if(b==NULL)
return 0;
else{
lchilddep = BTNodeDepth(b->lchild);
rchilddep = BTNodeDepth(b->rchild);
return (lchilddep>rchilddep)?(lchilddep+1):(rchilddep+1);
}
}
void DispBTNode(BTNode *b){
if(b!=NULL){
printf("%c",b->data);
if(b->lchild!=NULL||b->rchild!=NULL){
printf("(");
DispBTNode(b->lchild);
if(b->rchild!=NULL)
printf(",");
DispBTNode(b->rchild);
printf(")");
}
}
}
void PreOrder(BTNode *b){
if(b!=NULL){
circlegraph(b,2,4);
delay(900000000);
circlegraph(b,1,4);
PreOrder(b->lchild);
PreOrder(b->rchild);
}
}
void InOrder(BTNode *b){
if(b!=NULL){
InOrder(b->lchild);
circlegraph(b,2,4);
delay(900000000);
circlegraph(b,1,4);
InOrder(b->rchild);
}
}
void PostOrder(BTNode *b){
if(b!=NULL){
PostOrder(b->lchild);
PostOrder(b->rchild);
circlegraph(b,2,4);
delay(900000000);
circlegraph(b,1,4);
}
}
void LevelOrder(BTNode *b){
BTNode *Qu[MaxSize];
int front,rear;
front = rear = 0;
if(b!=NULL){
circlegraph(b,2,4);
delay(900000000);
circlegraph(b,1,4);
rear++;
Qu[rear]=b;
while(rear!=front){
front++;
b=Qu[front];
if(b->lchild!=NULL){
circlegraph(b->lchild,2,4);
delay(900000000);
circlegraph(b->lchild,1,4);
rear++;
Qu[rear]=b->lchild;
}
if(b->rchild!=NULL){
circlegraph(b->rchild,2,4);
delay(900000000);
circlegraph(b->rchild,1,4);
rear++;
Qu[rear]=b->rchild;
}
}
}
}
void DeleteNode(BTNode *b,ElemType c,BTNode *path[],int pathlen){
if(b!=NULL){
if(b->data==c){
if(path[pathlen-1]->lchild->data==c)
path[pathlen-1]->lchild = NULL;
if(path[pathlen-1]->rchild->data==c)
path[pathlen-1]->rchild = NULL;
DestroyBTNode(b);
}
if(b->lchild!=NULL||b->rchild!=NULL){
path[pathlen]=b;
pathlen++;
DeleteNode(b->lchild,c,path,pathlen);
DeleteNode(b->rchild,c,path,pathlen);
pathlen--;
}
}
}
void DestroyBTNode(BTNode *b){
if(b!=NULL){
DestroyBTNode(b->lchild);
DestroyBTNode(b->rchild);
free(b);
}
}
void InsertNode(BTNode *b,ElemType node,ElemType location,ElemType direction){
if(b!=NULL){
BTNode *p;
BTNode *p1;
if(b->data == location){
if(direction == 'l'||direction == 'L'){
if(b->lchild!=NULL){
p1 = b->lchild;
}else
p1 = NULL;
p = (BTNode *)malloc(sizeof(BTNode));
p->data = node;
p->lchild = p->rchild = NULL;
p->x = p->y = 0;
p->ltag = p->rtag = 0;
b->lchild = p;
p->lchild = p1;
}
if(direction == 'r'||direction == 'R'){
if(b->rchild!=NULL){
p1 = b->lchild;
}else
p1 = NULL;
p = (BTNode *)malloc(sizeof(BTNode));
p->data = node;
p->lchild = p->rchild = NULL;
p->x = p->y = 0;
p->ltag = p->rtag = 0;
b->rchild = p;
p->rchild = p1;
}
}
if(b->lchild!=NULL||b->rchild!=NULL){
InsertNode(b->lchild,node,location,direction);
InsertNode(b->rchild,node,location,direction);
}
}
}
void LeafNodes(BTNode *b){
if(b!=NULL){
if(b->lchild==NULL&&b->rchild==NULL){
circlegraph(b,2,4);
delay(900000000);
}
else{
LeafNodes(b->lchild);
LeafNodes(b->rchild);
}
}
}
void FindNodes(BTNode *b,ElemType a){
if(b!=NULL){
if(b->data == a){
circlegraph(b,YELLOW,BLACK);
delay(900000000000000);
}else{
circlegraph(b,GREEN,RED);
delay(90000000);
circlegraph(b,1,4);
}
if(b->lchild!=NULL||b->rchild!=NULL){
FindNodes(b->lchild,a);
FindNodes(b->rchild,a);
}
}
}
/*节点到根节点的路径长度函数,b 为根节点,c 为当前节点,pathlen 为路径长度*/
void PathLeaf(BTNode *b,BTNode *c,int pathlen){
if(b!=NULL){
if(b->lchild!=NULL||b->rchild!=NULL){
pathlen++;
PathLeaf(b->lchild,c,pathlen);
PathLeaf(b->rchild,c,pathlen);
pathlen--;
}
if(b==c){
c->pathlen = pathlen+1;
}
}
}
/*对二叉树P进行先序线索化*/
void InitPreOrderThread(BTNode *p){
if(p!=NULL){
InitPreOrderThread(p->rchild);
InitPreOrderThread(p->lchild);
if(p->lchild==NULL){
p->lchild = pre;
p->ltag = 1;
}else
p->ltag = 0;
if(pre ->rchild==NULL){
pre->rchild = p;
pre->rtag = 1;
}else
pre->rtag = 0;
pre = p;
}
}
/*先序线索化二叉树*/
BTNode *CreatePreOrderThread(BTNode *b){
BTNode *root;
root = (BTNode *)malloc(sizeof(BTNode));
if(!root){
return root;
}
root->ltag = 0;
root->rtag = 1;
root->rchild = b;
if(b==NULL){
root->lchild = root;
}else{
root->lchild = b;
pre = root;
InitPreOrderThread(b);
pre->rchild = root;
pre->rtag = 1;
root->rchild = pre;
}
return root;
}
/*先序线索化二叉树tb实现先序遍历*/
void PreOrderThread(BTNode *root){
BTNode *b = root->lchild;
while(b!=root){
preorderthread_line_graph(b,root,GREEN,3);
delay(900000000000000);
b = b->lchild;
}
}
/*对二叉树P进行中序线索化*/
void InitInOrderThread(BTNode *p){
if(p!=NULL){
InitInOrderThread(p->lchild);
if(p->lchild==NULL){
p->lchild = pre;
p->ltag = 1;
}else
p->ltag = 0;
if(pre ->rchild==NULL){
pre->rchild = p;
pre->rtag = 1;
}else
pre->rtag = 0;
pre = p;
InitInOrderThread(p->rchild);
}
}
/*中序线索化二叉树*/
BTNode *CreateInOrderThread(BTNode *b){
BTNode *root;
root = (BTNode *)malloc(sizeof(BTNode));
if(!root){
return root;
}
root->ltag = 0;
root->rtag = 1;
root->rchild = b;
if(b==NULL){
root->lchild = root;
}else{
root->lchild = b;
pre = root;
InitInOrderThread(b);
pre->rchild = root;
pre->rtag = 1;
root->rchild = pre;
}
return root;
}
/*中序线索化二叉树tb实现中序遍历*/
void InOrderThread(BTNode *tb){
BTNode *p;
p = tb->lchild;
while(p!=tb){
while(p->ltag==0)
p = p->lchild;
inorderthread_line_graph(p,tb,GREEN,3);
delay(9000000000000000);
while(p->rtag==1&&p->rchild!=tb){
p = p->rchild;
inorderthread_line_graph(p,tb,GREEN,3);
delay(9000000000000000);
}
p = p->rchild;
}
}
/*对二叉树P进行后序线索化*/
void InitPostOrderThread(BTNode *p){
if(p!=NULL){
InitPostOrderThread(p->lchild);
InitPostOrderThread(p->rchild);
if(p->lchild==NULL){
p->lchild = pre;
p->ltag = 1;
}else
p->ltag = 0;
if(pre ->rchild==NULL){
pre->rchild = p;
pre->rtag = 1;
}else
pre->rtag = 0;
pre = p;
}
}
/*后序线索化二叉树*/
BTNode *CreatePostOrderThread(BTNode *b){
BTNode *root;
root = (BTNode *)malloc(sizeof(BTNode));
if(!root){
return root;
}
root->ltag = 0;
root->rtag = 1;
root->rchild = b;
if(b==NULL){
root->lchild = root;
}else{
root->lchild = b;
pre = root;
InitPostOrderThread(b);
root->rchild = pre;
}
return root;
}
/*后序线索化二叉树tb实现后序遍历*/
void PostOrderThread(BTNode *b){
if(b->ltag==0)
PostOrderThread(b->lchild);
if(b->rtag==0)
PostOrderThread(b->rchild);
postorderthread_line_graph(b,GREEN,3);
delay(900000000000000000);
}
标签:lchild,NULL,void,BTNode,之树,rchild,数据结构,root 来源: https://blog.csdn.net/m0_37755380/article/details/88814045