其他分享
首页 > 其他分享> > 信息学一本通 1309:【例1.6】回文数(Noip1999)

信息学一本通 1309:【例1.6】回文数(Noip1999)

作者:互联网

时间限制: 1000 ms         内存限制: 65536 KB

提交数: 17647     通过数: 7270

【题目描述】

若一个数(首位不为零)从左向右读与从右向左读都是一样,我们就将其称之为回文数。例如:给定一个 10进制数 56,将 56加 65(即把56从右向左读),得到 121是一个回文数。又如,对于10进制数87,

STEP1: 87+78= 165 STEP2: 165+561= 726

STEP3: 726+627=1353 STEP4:1353+3531=4884

在这里的一步是指进行了一次N进制的加法,上例最少用了4步得到回文数4884。

写一个程序,给定一个N(2<N<=10或N=16)进制数 M.求最少经过几步可以得到回文数。如果在30步以内(包含30步)不可能得到回文数,则输出“Impossible” 。

【输入】

第1行,给定一个N(2<N≤10或N=16)表示进制;

第2行,一个N进制数M。

【输出】

最少几步。如果在30步以内(包含30步)不可能得到回文数,则输出“Impossible”。

【输入样例】

9
87

【输出样例】

6
信息学奥赛学习资料

链接:https://pan.baidu.com/s/1IBH3uj7OdE6gx16RYxZCtw?pwd=ip6d
提取码:ip6d

#include <bits/stdc++.h>
using namespace std;
int n, a[101], b[101], num;
void init() {
    memset(a, 0, sizeof(a));
    string s; cin >> s;
    a[0] = s.size();
    for(int i = 1; i <= a[0]; i ++)
        if(s[a[0] - i] >= '0' && s[a[0] - i] <= '9') a[i] = s[a[0] - i] - '0';
        else a[i] = s[a[0] - i] - 'A' + 10;
}
bool isReturn() {
    for(int i = 1; i <= a[0]; i ++)
        if(a[i] != a[a[0] - i + 1]) return false;
    return true;
}
void returnPlus() {
    for(int i = 0; i <= a[0]; i ++) b[i] = a[i];
    for(int i = 1; i <= a[0]; i ++) {
        a[i] += b[a[0] - i + 1];
        if(a[i] >= n) a[i + 1] += a[i] / n, a[i] %= n;
    }
    if(a[a[0] + 1] != 0) a[0] ++;
}
int main() {
    scanf("%d", &n);
    init();
    while(!isReturn()) {
        if(num == 30) {
            printf("Impossible"); return 0;
        }
        returnPlus();
        num ++;
    }
    printf("%d", num);
    return 0;
}

  

 

标签:10,1.6,进制,30,1309,num,Noip1999,Impossible,回文
来源: https://www.cnblogs.com/sd129/p/16652208.html