其他分享
首页 > 其他分享> > HorizontalPodAutoscaler 自动扩容方式

HorizontalPodAutoscaler 自动扩容方式

作者:互联网

HorizontalPodAutoscaler(简称 HPA ) 自动更新工作负载资源(例如 Deployment 或者 StatefulSet), 目的是自动扩缩工作负载以满足需求。

水平扩缩意味着对增加的负载的响应是部署更多的 Pod。 这与 “垂直(Vertical)” 扩缩不同,对于 Kubernetes, 垂直扩缩意味着将更多资源(例如:内存或 CPU)分配给已经为工作负载运行的 Pod。

如果负载减少,并且 Pod 的数量高于配置的最小值, HorizontalPodAutoscaler 会指示工作负载资源(Deployment、StatefulSet 或其他类似资源)缩减。

本文档将引导你完成启用 HorizontalPodAutoscaler 以自动管理示例 Web 应用程序的扩缩的示例。 此示例工作负载是运行一些 PHP 代码的 Apache httpd。

部署并配置了 Metrics Server 的集群。 Kubernetes Metrics Server 从集群中的 kubelets 收集资源指标, 并通过 Kubernetes API 公开这些指标, 使用 APIService 添加代表指标读数的新资源。

创建 HorizontalPodAutoscaler

kubectl autoscale deployment php-apache --cpu-percent=50 --min=1 --max=10

查看

NAME         REFERENCE                     TARGET    MINPODS   MAXPODS   REPLICAS   AGE
php-apache   Deployment/php-apache/scale   0% / 50%  1         10        1          18s

 

基于多项度量指标和自定义度量指标自动扩缩

利用 autoscaling/v2 API 版本,你可以在自动扩缩 php-apache 这个 Deployment 时使用其他度量指标。

首先,将 HorizontalPodAutoscaler 的 YAML 文件改为 autoscaling/v2 格式

kubectl get hpa php-apache -o yaml > /tmp/hpa-v2.yaml

在编辑器中打开 /tmp/hpa-v2.yaml,你应看到如下所示的 YAML 文件:

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: php-apache
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: php-apache
  minReplicas: 1
  maxReplicas: 10
  metrics:
  - type: Resource
    resource:
      name: cpu
      target:
        type: Utilization
        averageUtilization: 50
status:
  observedGeneration: 1
  lastScaleTime: <some-time>
  currentReplicas: 1
  desiredReplicas: 1
  currentMetrics:
  - type: Resource
    resource:
      name: cpu
      current:
        averageUtilization: 0
        averageValue: 0

 

需要注意的是,targetCPUUtilizationPercentage 字段已经被名为 metrics 的数组所取代。 CPU 利用率这个度量指标是一个 resource metric(资源度量指标),因为它表示容器上指定资源的百分比。 除 CPU 外,你还可以指定其他资源度量指标。默认情况下,目前唯一支持的其他资源度量指标为内存。 只要 metrics.k8s.io API 存在,这些资源度量指标就是可用的,并且他们不会在不同的 Kubernetes 集群中改变名称。

你还可以指定资源度量指标使用绝对数值,而不是百分比,你需要将 target.type 从 Utilization 替换成 AverageValue,同时设置 target.averageValue 而非 target.averageUtilization 的值。

还有两种其他类型的度量指标,他们被认为是 custom metrics(自定义度量指标): 即 Pod 度量指标和 Object 度量指标。 这些度量指标可能具有特定于集群的名称,并且需要更高级的集群监控设置。

第一种可选的度量指标类型是 Pod 度量指标。这些指标从某一方面描述了 Pod, 在不同 Pod 之间进行平均,并通过与一个目标值比对来确定副本的数量。 它们的工作方式与资源度量指标非常相像,只是它们 仅 支持 target 类型为 AverageValue

Pod 度量指标通过如下代码块定义:

type: Pods
pods:
  metric:
    name: packets-per-second
  target:
    type: AverageValue
    averageValue: 1k

第二种可选的度量指标类型是对象 (Object)度量指标。 这些度量指标用于描述在相同名字空间中的别的对象,而非 Pod。 请注意这些度量指标不一定来自某对象,它们仅用于描述这些对象。 对象度量指标支持的 target 类型包括 Value 和 AverageValue。 如果是 Value 类型,target 值将直接与 API 返回的度量指标比较, 而对于 AverageValue 类型,API 返回的度量值将按照 Pod 数量拆分, 然后再与 target 值比较。 下面的 YAML 文件展示了一个表示 requests-per-second 的度量指标。

type: Object
object:
  metric:
    name: requests-per-second
  describedObject:
    apiVersion: networking.k8s.io/v1
    kind: Ingress
    name: main-route
  target:
    type: Value
    value: 2k

 

如果你指定了多个上述类型的度量指标,HorizontalPodAutoscaler 将会依次考量各个指标。 HorizontalPodAutoscaler 将会计算每一个指标所提议的副本数量,然后最终选择一个最高值。

比如,如果你的监控系统能够提供网络流量数据,你可以通过 kubectl edit 命令将上述 Horizontal Pod Autoscaler 的定义更改为:

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: php-apache
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: php-apache
  minReplicas: 1
  maxReplicas: 10
  metrics:
  - type: Resource
    resource:
      name: cpu
      target:
        type: Utilization
        averageUtilization: 50
  - type: Pods
    pods:
      metric:
        name: packets-per-second
      target:
        type: AverageValue
        averageValue: 1k
  - type: Object
    object:
      metric:
        name: requests-per-second
      describedObject:
        apiVersion: networking.k8s.io/v1
        kind: Ingress
        name: main-route
      target:
        type: Value
        value: 10k
status:
  observedGeneration: 1
  lastScaleTime: <some-time>
  currentReplicas: 1
  desiredReplicas: 1
  currentMetrics:
  - type: Resource
    resource:
      name: cpu
    current:
      averageUtilization: 0
      averageValue: 0
  - type: Object
    object:
      metric:
        name: requests-per-second
      describedObject:
        apiVersion: networking.k8s.io/v1
        kind: Ingress
        name: main-route
      current:
        value: 10k

 

这样,你的 HorizontalPodAutoscaler 将会尝试确保每个 Pod 的 CPU 利用率在 50% 以内, 每秒能够服务 1000 个数据包请求, 并确保所有在 Ingress 后的 Pod 每秒能够服务的请求总数达到 10000 个。

基于更特别的度量值来扩缩 

许多度量流水线允许你通过名称或附加的 标签 来描述度量指标。 对于所有非资源类型度量指标(Pod、Object 和后面将介绍的 External), 可以额外指定一个标签选择算符。例如,如果你希望收集包含 verb 标签的 http_requests 度量指标,可以按如下所示设置度量指标块,使得扩缩操作仅针对 GET 请求执行:

type: Object
object:
  metric:
    name: http_requests
    selector: {matchLabels: {verb: GET}}

 

这个选择算符使用与 Kubernetes 标签选择算符相同的语法。 如果名称和标签选择算符匹配到多个系列,监测管道会决定如何将多个系列合并成单个值。 选择算符是可以累加的,它不会选择目标以外的对象(类型为 Pods 的目标 Pod 或者类型为 Object 的目标对象)。

运行在 Kubernetes 上的应用程序可能需要基于与 Kubernetes 集群中的任何对象没有明显关系的度量指标进行自动扩缩, 例如那些描述与任何 Kubernetes 名字空间中的服务都无直接关联的度量指标。 在 Kubernetes 1.10 及之后版本中,你可以使用外部度量指标(external metrics)。

使用外部度量指标时,需要了解你所使用的监控系统,相关的设置与使用自定义指标时类似。 外部度量指标使得你可以使用你的监控系统的任何指标来自动扩缩你的集群。 你需要在 metric 块中提供 name 和 selector,同时将类型由 Object 改为 External。 如果 metricSelector 匹配到多个度量指标,HorizontalPodAutoscaler 将会把它们加和。 外部度量指标同时支持 Value 和 AverageValue 类型,这与 Object 类型的度量指标相同。

例如,如果你的应用程序处理来自主机上消息队列的任务, 为了让每 30 个任务有 1 个工作者实例,你可以将下面的内容添加到 HorizontalPodAutoscaler 的配置中。

 

- type: External
  external:
    metric:
      name: queue_messages_ready
      selector:
        matchLabels:
          queue: "worker_tasks"
    target:
      type: AverageValue
      averageValue: 30

 

如果可能,还是推荐定制度量指标而不是外部度量指标,因为这便于让系统管理员加固定制度量指标 API。 而外部度量指标 API 可以允许访问所有的度量指标。 当暴露这些服务时,系统管理员需要仔细考虑这个问题。

 

 

https://kubernetes.io/zh-cn/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/

标签:扩容,name,指标,target,自动,HorizontalPodAutoscaler,Pod,type,度量
来源: https://www.cnblogs.com/fengjian2016/p/16615874.html