其他分享
首页 > 其他分享> > IO多路复用

IO多路复用

作者:互联网

1、什么是多路复用

IO多路复用(IO Multiplexing)一种同步IO模型,单个进程/线程就可以同时处理多个IO请求。一个进程/线程可以监视多个文件句柄;一旦某个文件句柄就绪,就能够通知应用程序进行相应的读写操作;没有文件句柄就绪时会阻塞应用程序,交出cpu。多路是指网络连接,复用指的是同一个进程/线程。
一个进程/线程虽然任一时刻只能处理一个请求,但是处理每个请求的事件时,耗时控制在 1 毫秒以内,这样 1 秒内就可以处理上千个请求,把时间拉长来看,多个请求复用了一个进程/线程,这就是多路复用,这种思想很类似一个 CPU 并发多个进程,所以也叫做时分多路复用。

2、为什么出现IO多路服用机制

在没有使用IO多路复用机制时,有BIO、NIO两种实现方式,但是会出现阻塞或者开销大的问题
同步阻塞(BIO)
1,服务端采用单线程,当accept一个请求后,在recv和send调用阻塞时,将无法accept其他请求(必须等上一个请求处理完recv或send),不能处理并发

// 伪代码描述
while(1) {
  // accept阻塞
  client_fd = accept(listen_fd)
  fds.append(client_fd)
  for (fd in fds) {
    // recv阻塞(会影响上面的accept)
    if (recv(fd)) {
      // logic
    }
  }  
}

2,服务器端采用多线程,当accept一个请求后,开启线程进行recv,可以完成并发处理,但随着请求数增加需要增加系统线程,大量的线程占用很大的内存空间,并且线程切换会带来很大的开销,10000个线程真正发生读写事件的线程数不会超过20%,每次accept都开一个线程也是一种资源浪费

// 伪代码描述
while(1) {
  // accept阻塞
  client_fd = accept(listen_fd)
  // 开启线程read数据(fd增多导致线程数增多)
  new Thread func() {
    // recv阻塞(多线程不影响上面的accept)
    if (recv(fd)) {
      // logic
    }
  }  
}

同步非阻塞(NIO)
服务器端当accept一个请求后,加入fds集合,每次轮询一遍fds集合recv(非阻塞)数据,没有数据则立即返回错误,每次轮询所有fd(包括没有发生读写事件的fd)会很浪费cpu

setNonblocking(listen_fd)
// 伪代码描述
while(1) {
  // accept非阻塞(cpu一直忙轮询)
  client_fd = accept(listen_fd)
  if (client_fd != null) {
    // 有人连接
    fds.append(client_fd)
  } else {
    // 无人连接
  }  
  for (fd in fds) {
    // recv非阻塞
    setNonblocking(client_fd)
    // recv 为非阻塞命令
    if (len = recv(fd) && len > 0) {
      // 有读写数据
      // logic
    } else {
       无读写数据
    }
  }  
}

IO多路复用(现在的做法)
服务器端采用单线程通过select/epoll等系统调用获取fd列表,遍历有事件的fd进行accept/recv/send,使其能支持更多的并发连接请求

fds = [listen_fd]
// 伪代码描述
while(1) {
  // 通过内核获取有读写事件发生的fd,只要有一个则返回,无则阻塞
  // 整个过程只在调用select、poll、epoll这些调用的时候才会阻塞,accept/recv是不会阻塞
  for (fd in select(fds)) {
    if (fd == listen_fd) {
        client_fd = accept(listen_fd)
        fds.append(client_fd)
    } elseif (len = recv(fd) && len != -1) { 
      // logic
    }
  }  
}

3、IO多路复用的三种实现方式

select函数

//select函数接口
#include <sys/select.h>
#include <sys/time.h>
 
#define FD_SETSIZE 1024
#define NFDBITS (8 * sizeof(unsigned long))
#define __FDSET_LONGS (FD_SETSIZE/NFDBITS)
 
// 数据结构 (bitmap)
typedef struct {
    unsigned long fds_bits[__FDSET_LONGS];
} fd_set;
 
// API
int select(
    int max_fd, 
    fd_set *readset, 
    fd_set *writeset, 
    fd_set *exceptset, 
    struct timeval *timeout
)                              // 返回值就绪描述符的数目
 
FD_ZERO(int fd, fd_set* fds)   // 清空集合
FD_SET(int fd, fd_set* fds)    // 将给定的描述符加入集合
FD_ISSET(int fd, fd_set* fds)  // 判断指定描述符是否在集合中 
FD_CLR(int fd, fd_set* fds)    // 将给定的描述符从文件中删除  


//selec使用示例
int main() {
  /*
   * 这里进行一些初始化的设置,
   * 包括socket建立,地址的设置等,
   */
 
  fd_set read_fs, write_fs;
  struct timeval timeout;
  int max = 0;  // 用于记录最大的fd,在轮询中时刻更新即可
 
  // 初始化比特位
  FD_ZERO(&read_fs);
  FD_ZERO(&write_fs);
 
  int nfds = 0; // 记录就绪的事件,可以减少遍历的次数
  while (1) {
    // 阻塞获取
    // 每次需要把fd从用户态拷贝到内核态
    nfds = select(max + 1, &read_fd, &write_fd, NULL, &timeout);
    // 每次需要遍历所有fd,判断有无读写事件发生
    for (int i = 0; i <= max && nfds; ++i) {
      if (i == listenfd) {
         --nfds;
         // 这里处理accept事件
         FD_SET(i, &read_fd);//将客户端socket加入到集合中
      }
      if (FD_ISSET(i, &read_fd)) {
        --nfds;
        // 这里处理read事件
      }
      if (FD_ISSET(i, &write_fd)) {
         --nfds;
        // 这里处理write事件
      }
    }
  }

selec缺点:
单个进程所打开的FD是有限制的,通过FD_SETSIZE设置,默认1024
每次调用select,都需要把fd集合从用户态拷贝到内核态,这个开销在fd很多时会很大
对socket扫描时是线性扫描,采用轮询的方法,效率较低(高并发时)

poll函数

//poll函数接口
//poll与selec相比,只是没有fd的限制,其他基本一样
#include <poll.h>
// 数据结构
struct pollfd {
    int fd;                         // 需要监视的文件描述符
    short events;                   // 需要内核监视的事件
    short revents;                  // 实际发生的事件
};
 
// API
int poll(struct pollfd fds[], nfds_t nfds, int timeout);

//poll使用示例
// 先宏定义长度
#define MAX_POLLFD_LEN 4096  
 
int main() {
  /*
   * 在这里进行一些初始化的操作,
   * 比如初始化数据和socket等。
   */
 
  int nfds = 0;
  pollfd fds[MAX_POLLFD_LEN];
  memset(fds, 0, sizeof(fds));
  fds[0].fd = listenfd;
  fds[0].events = POLLRDNORM;
  int max  = 0;  // 队列的实际长度,是一个随时更新的,也可以自定义其他的
  int timeout = 0;
 
  int current_size = max;
  while (1) {
    // 阻塞获取
    // 每次需要把fd从用户态拷贝到内核态
    nfds = poll(fds, max+1, timeout);
    if (fds[0].revents & POLLRDNORM) {
        // 这里处理accept事件
        connfd = accept(listenfd);
        //将新的描述符添加到读描述符集合中
    }
    // 每次需要遍历所有fd,判断有无读写事件发生
    for (int i = 1; i < max; ++i) {     
      if (fds[i].revents & POLLRDNORM) { 
         sockfd = fds[i].fd
         if ((n = read(sockfd, buf, MAXLINE)) <= 0) {
            // 这里处理read事件
            if (n == 0) {
                close(sockfd);
                fds[i].fd = -1;
            }
         } else {
             // 这里处理write事件     
         }
         if (--nfds <= 0) {
            break;       
         }   
      }
    }
  }



poll缺点:
每次调用poll,都需要把fd集合从用户态拷贝到内核态,这个开销在fd很多时会很大
对socket扫描时是线性扫描,采用轮询的方法,效率较低(高并发时)

epoll函数

//epoll函数接口
#include <sys/epoll.h>
 
// 数据结构
// 每一个epoll对象都有一个独立的eventpoll结构体
// 用于存放通过epoll_ctl方法向epoll对象中添加进来的事件
// epoll_wait检查是否有事件发生时,只需要检查eventpoll对象中的rdlist双链表中是否有epitem元素即可
struct eventpoll {
    /*红黑树的根节点,这颗树中存储着所有添加到epoll中的需要监控的事件*/
    struct rb_root  rbr;
    /*双链表中则存放着将要通过epoll_wait返回给用户的满足条件的事件*/
    struct list_head rdlist;
};
 
// API
 
int epoll_create(int size); // 内核中间加一个 ep 对象,把所有需要监听的 socket 都放到 ep 对象中
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event); // epoll_ctl 负责把 socket 增加、删除到内核红黑树
int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);// epoll_wait 负责检测可读队列,没有可读 socket 则阻塞进程


//epoll使用示例
int main(int argc, char* argv[])
{
   /*
   * 在这里进行一些初始化的操作,
   * 比如初始化数据和socket等。
   */
 
    // 内核中创建ep对象
    epfd=epoll_create(256);
    // 需要监听的socket放到ep中
    epoll_ctl(epfd,EPOLL_CTL_ADD,listenfd,&ev);
 
    while(1) {
      // 阻塞获取
      nfds = epoll_wait(epfd,events,20,0);
      for(i=0;i<nfds;++i) {
          if(events[i].data.fd==listenfd) {
              // 这里处理accept事件
              connfd = accept(listenfd);
              // 接收新连接写到内核对象中
              epoll_ctl(epfd,EPOLL_CTL_ADD,connfd,&ev);
          } else if (events[i].events&EPOLLIN) {
              // 这里处理read事件
              read(sockfd, BUF, MAXLINE);
              //读完后准备写
              epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev);
          } else if(events[i].events&EPOLLOUT) {
              // 这里处理write事件
              write(sockfd, BUF, n);
              //写完后准备读
              epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev);
          }
      }
    }
    return 0;
}

epoll缺点:
只能在Linux下工作

epoll LT与ET模式的区别
epoll有EPOLLLT和EPOLLET两种触发模式,LT时默认的模式,ET时“高速”模式。
LT模式下,只要这个fd还有数据可读,每次epoll_wait都会返回它的事件,提醒用户程序去操作
ET模式下,它只会提示一次,直到下次再有数据流入之前都不会再提示了,无论fd中是否还有数据可读。所以再ET模式下,read一个fd的时候一定要把它的buffer读完,或者遇到EGAIN错误

7、select\poll\epoll之间的区别
selec poll epoll
数据结构 bitmap 数组 红黑树
最大连接数 1024 无上限 无上限
fd拷贝 每次调用selec拷贝 每次调用poll拷贝 fd首次调用epoll_ctl拷贝,每次调用epoll_wait不拷贝
工作效率 轮询O:(n) 轮询:O(n) 回调:O(1)

标签:多路复用,epoll,int,阻塞,accept,fds,fd,IO
来源: https://www.cnblogs.com/cfas/p/16600637.html