其他分享
首页 > 其他分享> > Six---pytorch学习---索引与切片

Six---pytorch学习---索引与切片

作者:互联网

pytorch学习(3)

索引与切片

普通索引

import torch

a = torch.Tensor(2,3,32,32)
print(a.shape)
print(a[0].shape)
print(a[0][0].shape)
print(a[0][0][0][0].shape)
print(a[0][0][0][0])
-------------------------------------------------------
torch.Size([2, 3, 32, 32])
torch.Size([3, 32, 32])
torch.Size([32, 32])
torch.Size([])
tensor(8.4125e-16)

冒号索引(切片)

import torch

a = torch.Tensor(2,3,32,32)
print(a[0:1,:,:,:].shape)
print(a[:,:,0:10,0:10].shape)
print(a[:,:,::2,::2].shape)
print(a[:,:,0:32:2,0:32:2].shape)
print(a[:,:,:,:].shape)
-------------------------------------------------------
torch.Size([1, 3, 32, 32])
torch.Size([2, 3, 10, 10])
torch.Size([2, 3, 16, 16])
torch.Size([2, 3, 16, 16])
torch.Size([2, 3, 32, 32])

index_select 选择特定索引

import torch

a = torch.linspace(0, 12, steps=12) 
#创建一个列表从0到12的浮点型
print(a)

c = a.view(3,4) #将a进行维度转换变为三行四列的二维张量

b = torch.index_select(c, 0, torch.tensor([0,2])) 
#索引张量c的1维,是行,即为索引第0行以及第2行
print(b)

d = torch.index_select(c, 1, torch.tensor([1,3])) 
#索引c的2维,是列,即为索引第1列和第3列
print(d)
-------------------------------------------------------
tensor([ 0.0000,  1.0909,  2.1818,  3.2727,  4.3636,  5.4545,  6.5455,  7.6364,
         8.7273,  9.8182, 10.9091, 12.0000])
tensor([[ 0.0000,  1.0909,  2.1818,  3.2727],
        [ 8.7273,  9.8182, 10.9091, 12.0000]])
tensor([[ 1.0909,  3.2727],
        [ 5.4545,  7.6364],
        [ 9.8182, 12.0000]])

masked_select选择符合条件的索引

import torch

a = torch.randn(3,3) #创建一个三行三列的正态分布的矩阵
print(a)
mask = torch.eye(3, 3, dtype=torch.bool) #根据torch.eye()创建一个布尔类型的三行三列的对角矩阵
print(mask)
c = torch.masked_select(a, mask) #将张量a基于mask进行索引
print(c)
-------------------------------------------------------
tensor([[ 1.1909,  0.2912, -0.1066],
        [ 0.9496,  0.6031,  1.5957],
        [-0.2447,  0.0101,  2.4906]])
tensor([[ True, False, False],
        [False,  True, False],
        [False, False,  True]])
tensor([1.1909, 0.6031, 2.4906])

take索引

import torch

a = torch.randn(3,3) #创建一个三行三列的正态分布的矩阵
print(a)
c = torch.take(a, torch.tensor([0,2,4,6,8]))
print(c)
-------------------------------------------------------
tensor([[-0.0397, -0.1663,  1.0296],
        [ 1.4970,  0.6902,  0.8004],
        [ 1.8391,  0.1241,  0.4261]])
tensor([-0.0397,  1.0296,  0.6902,  1.8391,  0.4261])

标签:torch,tensor,32,Six,shape,---,索引,pytorch,print
来源: https://www.cnblogs.com/311dih/p/16583850.html