图的遍历
作者:互联网
https://www.luogu.com.cn/problem/P3916
- tarjan求强连通分图,(有向图中相互可达),这样把强连通分图缩成点后处理,这个题目中每个强连通分图的答案是同一个
- 重新建图,图中的点为缩点
- dfs深度搜索,初始化每个缩点的答案为tarjan中求得的强连通分图中编号最大的点(M数组),在遍历连接到的点,如果可以更新便更新
- tarjan算法思路即代码B站有优质视频
// https://www.luogu.com.cn/problem/P3916#submit
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define MAX 100005
stack<int> S;
int idx, head[MAX], instack[MAX], low[MAX], DFN[MAX], tim, cnt, M[MAX], belong[MAX], ans[MAX], n, m, x[MAX], y[MAX];
struct Node
{
int to, nex;
} edge[MAX];
void add(int u, int v)
{
edge[++idx] = (Node){v, head[u]};
head[u] = idx;
}
void tarjan(int s)
{
S.push(s);
instack[s] = 1;
low[s] = DFN[s] = tim++;
for (int i = head[s]; i; i = edge[i].nex)
{
int to = edge[i].to;
if (!DFN[to])
{
tarjan(to);
low[s] = min(low[s], low[to]);
}
else if (instack[to])
low[s] = min(low[s], DFN[to]);
}
if (low[s] == DFN[s])
{
cnt++;
while (true)
{
int t = S.top();
S.pop();
belong[t] = cnt;
instack[t] = 0;
M[cnt] = max(M[cnt], t);
if (t == s)
{
break;
}
}
}
}
void dfs(int x)
{
ans[x] = M[x];
for (int i = head[x]; i; i = edge[i].nex)
{
int to = edge[i].to;
if (!ans[to])
dfs(to);
ans[x] = max(ans[x], ans[to]);
}
}
void input()
{
cin >> n >> m;
for (int i = 1; i <= m; i++)
{
scanf("%d%d", x + i, y + i);
add(x[i], y[i]);
}
}
void init()
{
memset(head, 0, sizeof(head));
memset(edge, 0, sizeof(edge));
idx = 0;
}
void rebuild()
{
init();
for (int i = 1; i <= m; i++)
{
if (belong[x[i]] != belong[y[i]])
add(belong[x[i]], belong[y[i]]);
}
}
int main()
{
input();
for (int i = 1; i <= n; i++)
{
if (!DFN[i])
tarjan(i);
}
rebuild();
for (int i = 1; i <= cnt; i++)
{
if (!ans[i])
dfs(i);
}
for (int i = 1; i <= n; i++)
{
printf("%d ", ans[belong[i]]);
}
}
标签:遍历,int,MAX,DFN,edge,low,ans 来源: https://www.cnblogs.com/Wang-Xianyi/p/16558338.html