05_ROI区域
作者:互联网
# 1. 位置提取ROI import cv2 #opencv的缩写为cv2 # import matplotlib.pyplot as plt # matplotlib库用于绘图展示 # import numpy as np # numpy数值计算工具包 # # def cv_show(name,img): cv2.imshow(name,img) cv2.waitKey(0) cv2.destroyAllWindows() # img = cv2.imread('D:/pycharm/pycharm-cope/opencv/resource/photo/01_cat.jpg') # cat = img[0:200,0:200] # 选择图片感兴趣的区域 # cv_show('cat',cat) # # 2. 通道提取ROI # #2.1 分离 BGR 通道 # img = cv2.imread('D:/pycharm/pycharm-cope/opencv/resource/photo/01_cat.jpg') # b,g,r = cv2.split(img) # # b.shape: (414, 500) # # g.shape: (414, 500) # # r.shape: (414, 500) # # img.shape: (414, 500, 3) # cv_show('cat_b',b) # print('b.shape:',b.shape) # B通道,单通道,灰度图 # cv_show('cat_g',g) # print('g.shape:',g.shape) # G通道,单通道,灰度图 # cv_show('cat_r',r) # print('r.shape:',r.shape) # R通道,单通道,灰度图 # img = cv2.merge((b,g,r)) # cv_show('cat', img) # print('img.shape:',img.shape) # 3 通道,彩色图 # ## 2.2 展示 R 通道 # # # 只保留 R # img = cv2.imread('D:/pycharm/pycharm-cope/opencv/resource/photo/01_cat.jpg') # b,g,r = cv2.split(img) # img = cv2.merge((b,g,r)) # cur_img = img.copy() # cur_img[:,:,0] = 0 # cur_img[:,:,1] = 0 # cv_show('R',cur_img) # ## 2.3 展示 G 通道 # # 只保留 G # img = cv2.imread('D:/pycharm/pycharm-cope/opencv/resource/photo/01_cat.jpg') # cur_img = img.copy() # cur_img[:,:,0] = 0 # cur_img[:,:,2] = 0 # cv_show('G',cur_img) # # ## 2.4 展示 R 通道 # # 只保留 R img = cv2.imread('D:/pycharm/pycharm-cope/opencv/resource/photo/01_cat.jpg') cur_img = img.copy() cur_img[:,:,1] = 0 cur_img[:,:,2] = 0 cv_show('B',cur_img)
标签:ROI,cur,img,05,cv2,cat,shape,区域,pycharm 来源: https://www.cnblogs.com/tuyin/p/16546175.html