剑指 Offer 59 - II. 队列的最大值
作者:互联网
剑指 Offer 59 - II. 队列的最大值
请定义一个队列并实现函数 max_value
得到队列里的最大值,要求函数max_value
、push_back
和 pop_front
的均摊时间复杂度都是O(1)。
若队列为空,pop_front
和 max_value
需要返回 -1
示例 1:
输入: ["MaxQueue","push_back","push_back","max_value","pop_front","max_value"] [[],[1],[2],[],[],[]] 输出: [null,null,null,2,1,2]
示例 2:
输入: ["MaxQueue","pop_front","max_value"] [[],[],[]] 输出: [null,-1,-1]
限制:
1 <= push_back,pop_front,max_value的总操作数 <= 10000
1 <= value <= 10^5
解析:
承接上题,用的单调队列
class MaxQueue { public: int que[10010]; int humdrum[10010]; int i, j, x, y; MaxQueue() { i = -1; j = 0; x = 0; y = -1; } int max_value() { if(x > y) return -1; if(humdrum[j] == -1) { cout << j << " " << i << endl; cout << x << " " << y << endl; } return que[humdrum[j]]; } void push_back(int value) { que[++y] = value; while(i >= j && que[humdrum[i]] <= value) { i--; } humdrum[++i] = y; } int pop_front() { if(x > y) return -1; int ret = que[x++]; while(j <= i && humdrum[j] < x) j++; return ret; } }; /** * Your MaxQueue object will be instantiated and called as such: * MaxQueue* obj = new MaxQueue(); * int param_1 = obj->max_value(); * obj->push_back(value); * int param_3 = obj->pop_front(); */
标签:59,Offer,int,max,back,value,II,pop,front 来源: https://www.cnblogs.com/WTSRUVF/p/16525945.html