其他分享
首页 > 其他分享> > 第四周总结

第四周总结

作者:互联网

    Hadoop是一个由Apache基金会所开发的分布式系统基础架构。

      用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。

      Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上;而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求,可以以流的形式访问(streaming access)文件系统中的数据。

      Hadoop的框架最核心的设计就是:HDFS和MapReduce。HDFS为海量的数据提供了存储,则MapReduce为海量的数据提供了计算。

Hadoop是一个能够对大量数据进行分布式处理软件框架。 Hadoop 以一种可靠、高效、可伸缩的方式进行数据处理。

  Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理

  Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。

  Hadoop 还是可伸缩的,能够处理 PB 级数据。

  此外,Hadoop 依赖于社区服务,因此它的成本比较低,任何人都可以使用。

  Hadoop是一个能够让用户轻松架构和使用的分布式计算平台。用户可以轻松地在Hadoop上开发和运行处理海量数据的应用程序。它主要有以下几个优点:

    1. 高可靠性。Hadoop按位存储和处理数据的能力值得人们信赖。

    2. 高扩展性。Hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中。

    3. 高效性。Hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此处理速度非常快。

    4. 高容错性。Hadoop能够自动保存数据的多个副本,并且能够自动将失败的任务重新分配。

    5. 低成本。与一体机、商用数据仓库以及QlikView、Yonghong Z-Suite等数据集市相比,hadoop是开源的,项目的软件成本因此会大大降低。

  Hadoop带有用Java语言编写的框架,因此运行在 Linux 生产平台上是非常理想的。Hadoop 上的应用程序也可以使用其他语言编写,比如 C++

  hadoop大数据处理的意义

  Hadoop得以在大数据处理应用中广泛应用得益于其自身在数据提取、变形和加载(ETL)方面上的天然优势。Hadoop的分布式架构,将大数据处理引擎尽可能的靠近存储,对例如像ETL这样的批处理操作相对合适,因为类似这样操作的批处理结果可以直接走向存储。Hadoop的MapReduce功能实现了将单个任务打碎,并将碎片任务(Map)发送到多个节点上,之后再以单个数据集的形式加载(Reduce)到数据仓库里。

标签:总结,HDFS,存储,Hadoop,应用程序,四周,数据,节点
来源: https://www.cnblogs.com/SHINIAN200/p/16513154.html