【题解】 洛谷 P2569 [SCOI2010]股票交易
作者:互联网
这题一眼dp,设 \(dp_{i,j}\) 表示 到第 \(i\) 天,手里还有 \(j\) 张股票时的最大收益,那么一共分四种情况:
购买分两种:
当本次购买是第一次购买时,\(dp_{i,j}=-AP_i\times j\)。
当本次不是第一次购买时,\(dp_{i,j}=\max\{dp_{i-w-1,j-k}-k\times AP_i\}\ \ k\in [j,AS_i]\)。
但是我们发现这么搞的话是 \(n^3\) 的,得优化一下。
发现 \(k\) 有一个范围,于是想到能不能把某一个式子写成只与 \(k\) 有关的,然后再加上一个常量。
改写一下,得到了另一个等价的表达式:\(dp_{i,j}=\max\{dp_{i-w-1,k}-(j-k)\times AP_i\}\)
\[=\max\{dp_{i-w-1,k}+k\times AP_i\}-j\times AP_i\ \ \ \ k\in [\max\{1,j-AS_i\},j] \]于是 \(\max\) 里面的就可以用单调队列维护了。
第三种是今天啥也不干,那就直接继承昨天:\(dp_{i,j}=dp_{i-1,j}\)
第四种是今天卖出,那么 \(dp_{i,j}=\max\{dp_{i-w-1,k}+(k-j)\times BP_i\}\)
\[=\max\{dp_{i-w-1,k}+k\times BP_i\}-j\times BP_i\ \ \ \ k\in [j+1,j+BS_i] \]标签:洛谷,题解,times,AP,BP,购买,max,dp,SCOI2010 来源: https://www.cnblogs.com/wapmhac0523/p/16498684.html