其他分享
首页 > 其他分享> > 平衡树——splay 一

平衡树——splay 一

作者:互联网

splay

一种平衡树,同时也是二叉排序树,与treap不同,它不需要维护堆的性质,它由Daniel Sleator和Robert Tarjan(没错,tarjan,又是他)创造,伸展树是一种自调整二叉树,它会将一个节点沿着到根的路径旋转上去。

空间效率:On

摊平时间效率:Ologn


 

存储结构

int ch[N][2],fa[N];//左孩子,右孩子,父亲 
ll val[N],siz[N],cnt[N];//点值 

数组存储,也可以用结构体。


 

基本操作:

一、旋转

与treap的旋转无太大差异,只要注意更新父节点就行了,记得要更新siz。

splay的旋转函数的参数,是转上去的那个数值,这里与treap不同,treap是转下来的数值。

void pushup(int id)//更新siz 
{
    siz[id]=siz[ch[id][0]]+siz[ch[id][1]]+cnt[id];
}
void spin(int x)
{
    rint y=fa[x],z=fa[y],d=(ch[y][1]==x);//d 判断x是y的左孩子还是右孩子 
    ch[z][ch[z][1]==y]=x,fa[x]=z;//处理x与z的关系 
    ch[y][d]=ch[x][d^1],fa[ch[x][d^1]]=y;//处理y的孩子与x的孩子的关系 
    ch[x][d^1]=y;fa[y]=x;//处理y与x的关系 
    pushup(y);//先更新y 
    pushup(x);//在更新x 
}

二、伸展

情况一:

x要移动到父节点的位置

 

 自己懒得画了,用的教练课件上的图

直接旋转x即可

情况二:

情况二:X点要移到到g或更向上的位置且g->p和p->x是同一方向。

 

 这里要先旋转p,再旋转x

情况三:

情况三:X点要移到到g或更向上的位置且g->p和p->x不是是同一方向。

 

 这里旋转两次x

你会发现,最后一次都是旋转x

void splay(int x,int goal)
{
    while(fa[x]!=goal)//判断是否已经到目标点的下边 
    {
        rint y=fa[x],z=fa[y];
        if(z!=goal)//判断是情况一还是情况二、三 
            (ch[y][0]==x)^(ch[z][0]==y)?spin(x):spin(y);
        //判断是情况二还是情况三 
        spin(x);
    }
    if(goal==0)    root=x;//如果移动到了根节点,则更新根节点 
}

三、插入节点

只要记得处理父节点就行了。

void insert(ll x)
{
    int u=root,fat=0;
    while(u&&val[u]!=x)//先向下找 
    {
        fat=u;
        u=ch[u][x>val[u]];
    }
    if(u)    cnt[u]++;
    else
    {
        u=++tot;
        if(fat)    ch[fat][x>val[fat]]=u;//如果不是根节点,更新孩子节点 
        fa[u]=fat;//插入操作 
        val[u]=x;
        siz[u]=1;
        cnt[u]=1;
    }
    splay(u,0);//每次都要伸展,避免成链 
}

四、查找结点

按照二叉排序树找到节点,然后将该节点伸展到到根节点就行了

void find(ll x)
{
    int u=root;
    if(!u)    return;//不存在该节点,直接返回 
    while(ch[u][x>val[u]]&&x!=val[u])//找到该节点的位置 
        u=ch[u][x>val[u]];
    splay(u,0);//伸展 
}

五、查找前驱后继

先将要查找的值的位置或相邻的位置伸展到根节点,然后在左右子树中搜索

int get(ll x,int d)//d:0找前驱 1找后继 
{
    find(x);//先伸展 
    int u=root;
    if((val[u]>x&&d)||(val[u]<x&&!d))    return u;
    //如果该节点已经符合要求,直接返回位置 
    u=ch[u][d];//找到左右子树 
    while(ch[u][d^1])    u=ch[u][d^1];
    //找左子树中最大的或右子树中最小的(关键看你找前驱还是后继) 
    return u;//返回前驱或后继的位置 
}

六、删除节点

先找到前驱和后继,将前驱伸展到根节点,将后继伸展到前驱下面,根据二叉查找树的性质,后继的左孩子就是我们要删的点,进行操作即可。

void del(ll x)
{
    int pre=get(x,0),nxt=get(x,1);//找前驱后继 
    splay(pre,0),splay(nxt,pre);//伸展 
    int id=ch[nxt][0];//要删除的点 
    if(cnt[id]>1)//如果这个数值有重复,直接--cnt即可 
    {
        --cnt[id];
        splay(id,0);//伸展 
    }
    else
    {
        ch[nxt][0]=0,fa[id]=0;//先切断联系 
        val[id]=0,cnt[id]=0,siz[id]=0;//再进行删除 
        pushup(nxt),pushup(pre);//最后更新siz 
    }
}

最基础的就只有这些了,其他操作以后更新。

标签:ch,val,int,id,splay,fa,平衡,节点
来源: https://www.cnblogs.com/yifan0305/p/16468884.html