其他分享
首页 > 其他分享> > abc256 G - Black and White Stones

abc256 G - Black and White Stones

作者:互联网

题意:

边长为 \(d\) 的正 \(n\) 边形,每条边上等距分布着 \(d+1\) 个点(包括两个端点)。现要把每个点染成黑/白色,要求每条边上的白点数相同,问方案数取模

要考虑顺序,即旋转对称/轴对称的算不同方案。

\(3\le n\le 1e12,1\le d\le 1e4\)

\(n=3,d=2\) 的示意图:

Figure

思路:

从 \(0\) 到 \(d+1\) 枚举每条边上的白点数 \(k\),然后 dp 求方案数

\(dp(fr,i,j)\) 表示第一个点是 \(fr\) 色,处理到第 \(i\) 条边,第 \(i\) 条边的终点是 \(j\) 色。暴力求 \(g(i)=f(0,i,0)+g(1,i,1)\) 的前几项然后BM加速求 \(g(n)\)

当然黑白是对称的,求 \(g(i)=2f(0,i,0)\) 即可

const int mod = 998244353;

ll qmi(ll a, ll b) {
    ll res = 1; a %= mod;
    for(; b; b >>= 1) {
        if(b&1) res = res * a % mod;
        a = a * a % mod;
    }
    return res;
}

namespace linear_seq {
    #define rep(i,a,n) for (int i=a;i<n;i++)
    #define SZ(x) ((int)(x).size())
    typedef vector<ll> VI;
    const int N=10010;
    ll res[N],base[N],_c[N],_md[N];

    vector<int> Md;
    void mul(ll *a,ll *b,int k) {
        rep(i,0,k+k) _c[i]=0;
        rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
        for (int i=k+k-1;i>=k;i--) if (_c[i])
            rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
        rep(i,0,k) a[i]=_c[i];
    }
    int solve(ll n,VI a,VI b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
        ll ans=0,pnt=0;
        int k=SZ(a);
        assert(SZ(a)==SZ(b));
        rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1;
        Md.clear();
        rep(i,0,k) if (_md[i]!=0) Md.push_back(i);
        rep(i,0,k) res[i]=base[i]=0;
        res[0]=1;
        while ((1ll<<pnt)<=n) pnt++;
        for (int p=pnt;p>=0;p--) {
            mul(res,res,k);
            if ((n>>p)&1) {
                for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;
                rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
            }
        }
        rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
        if (ans<0) ans+=mod;
        return ans;
    }
    VI BM(VI s) {
        VI C(1,1),B(1,1);
        int L=0,m=1,b=1;
        rep(n,0,SZ(s)) {
            ll d=0;
            rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;
            if (d==0) ++m;
            else if (2*L<=n) {
                VI T=C;
                ll c=mod-d*qmi(b,mod-2)%mod;
                while (SZ(C)<SZ(B)+m) C.pb(0);
                rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
                L=n+1-L; B=T; b=d; m=1;
            } else {
                ll c=mod-d*qmi(b,mod-2)%mod;
                while (SZ(C)<SZ(B)+m) C.pb(0);
                rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
                ++m;
            }
        }
        return C;
    }
    int gao(VI a,ll n) {
        VI c=BM(a);
        c.erase(c.begin());
        rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;
        return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
    }
};

const int N = 1e5 + 3;
ll jie[N], jieni[N]; void init() {
    jie[0] = 1; for(int i = 1; i < N; i++)
        jie[i] = jie[i-1] * i % mod;
    jieni[N-1] = qmi(jie[N-1], mod-2);
    for(int i = N-1; i; i--) jieni[i-1] = jieni[i]*i%mod;
}
ll C(ll n, ll k) {
    if(k > n || k < 0) return 0;
    return jie[n] * jieni[k] % mod * jieni[n-k] % mod;
}
ll add(ll a, ll b) { return ((a+b)%mod+mod)%mod; }

ll n, d, f[23][2], g[23];

void sol() {
    cin >> n >> d;
    ll ans = 0;
    for(int k = 0; k <= d + 1; k++) {
        memset(f, 0, sizeof f), f[0][0] = 1; //初值
        for(int i = 1; i <= 20; i++) { //dp
            for(int a = 0; a <= 1; a++) //这条边的末尾
            for(int b = 0; b <= 1; b++) //上条边的末尾
                f[i][a] = add(f[i][a], f[i-1][b] * C(d-1, k-a-b) % mod);
            g[i] = add(f[i][0], f[i][0]); //黑色开头也一样
        }
        ans = add(ans, linear_seq::gao(vector<ll>(g+1,g+20), n-1));
    }
    cout << ans;
}

标签:Stones,Md,int,res,ll,abc256,White,rep,mod
来源: https://www.cnblogs.com/wushansinger/p/16454228.html