P4240 毒瘤之神的考验
作者:互联网
Description
Solution
首先想到要把 \(\varphi(ij)\) 拆开,这里有个公式
\[\varphi(ij)=\dfrac{\varphi(i)\varphi(j)\gcd(i,j)}{\varphi(\gcd(i,j))} \]考虑证明,有
\[\begin{aligned} \varphi(i)\varphi(j) &= i\prod\limits_{p|i,p\in \mathtt{prime}}\frac{p-1}{p}\cdot j \prod\limits_{p|j,p\in\mathtt{prime}}\frac{p-1}{p}\\ &= ij\prod\limits_{p|ij,p\in\mathtt{prime}}\frac{p-1}{p}\cdot \prod\limits_{p|\gcd(i,j),p\in\mathtt{prime}}\frac{p-1}{p} \end{aligned} \]也就是 \(i,j\) 的并加上 \(i,j\) 的交。 接下来进入推柿子环节
\[\begin{aligned} \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m} \varphi(ij) &= \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m} \frac{\varphi(i)\varphi(j)\gcd(i,j)}{\varphi(\gcd(i,j))} \\&= \sum\limits_{d=1}^{n}\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m} \frac{\varphi(i)\varphi(j)d[\gcd(i,j)=d]}{\varphi(d)} \\&= \sum\limits_{d=1}^{n}\frac{d}{\varphi(d)}\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m }\varphi(i)\varphi(j)[\gcd(i,j)=d] \\&= \sum\limits_{d=1}^{n}\frac{d}{\varphi(d)}\sum_{t=1}^{n/d}\mu(t)\cdot \sum\limits_{i=1}^{n/(dt)}\sum\limits_{j=1}^{m/(dt)}\varphi(idt)\varphi(jdt) \\&= \sum\limits_{k=1}^{n}\sum\limits_{d|k} \frac{d\cdot\mu(k/d)}{\varphi(d)} \sum\limits_{i=1}^{n/k }\varphi(ik)\sum\limits_{j=1}^{m/k }\varphi(jk) \end{aligned} \]记 \(\displaystyle f(k)=\sum\limits_{d|k} \frac{d\cdot\mu(k/d)}{\varphi(d)},g(k,n)=\sum\limits_{i=1}^{n}\varphi(ik)\),容易发现这两个函数都容易在调和级数的复杂度内预处理出来。然而 \(\mathcal O(nT)\) 仍然是不现实的。如果是 CF 我就直接上了。
考虑怎么优化,还是将优化重点放在整除分块上
\[\sum_{i=1}^n\sum_{j=1}^m\varphi(ij)=\sum_{k=1}^nf(k)\cdot g(k,n/k)\cdot g(k,m/k) \]记 \(\displaystyle h(a,b,n)=\sum_{k=1}^nf(k)\cdot g(k,a)\cdot g(k,b)\),于是可以整除分块
\[\sum_{i=1}^n\sum_{j=1}^m\varphi(ij)=\sum_{n/l=n/r,\ m/l=m/r}h(n/r,m/r,r)-h(n/r,m/r,l-1) \]问题是,预处理 \(h\) 的复杂度是很高的,这里可以考虑 根号分治 —— 设定阈值 \(B\),将 \(a,b\leqslant B\) 的 \(h\) 预处理出来,不难发现这是 \(\mathcal O(nB^2)\) 的。当查询的时候,若 \(n/r\leqslant B\) 就直接 \(\mathcal O(1)\) 查询,否则有 \(r\leqslant n/B\),干脆不差分直接暴力算就是 \(\mathcal O(n/B)\) 的。
复杂度 \(\mathcal O\left(n\ln n+nB^2+\left(n^{1/2}+n/B\right)T\right)\).
块长可以用均值不等式来算,总复杂度算出来大概是 \(\mathcal O(6\cdot 10^7)\).
Code
# include <cstdio>
# include <cctype>
# define print(x,y) write(x), putchar(y)
template <class T>
inline T read(const T sample) {
T x=0; char s; bool f=0;
while(!isdigit(s=getchar())) f|=(s=='-');
for(; isdigit(s); s=getchar()) x=(x<<1)+(x<<3)+(s^48);
return f? -x: x;
}
template <class T>
inline void write(T x) {
static int writ[50], w_tp=0;
if(x<0) putchar('-'), x=-x;
do writ[++w_tp]=x-x/10*10, x/=10; while(x);
while(putchar(writ[w_tp--]^48), w_tp);
}
# include <vector>
# include <iostream>
using namespace std;
const int B = 20;
const int maxn = 1e5+5;
const int mod = 998244353;
int inv(int x,int y=mod-2,int r=1) {
for(; y; y>>=1, x=1ll*x*x%mod)
if(y&1) r=1ll*r*x%mod; return r;
}
bool is[maxn];
vector <int> g[maxn]; int h[B+1][B+1][maxn];
int phi[maxn], mu[maxn], pc, p[maxn], f[maxn];
int beelzebul(int n,int m) {
int ans=0; if(n>m) swap(n,m);
for(int i=1;i<=m/B+1;++i)
ans = (ans+1ll*f[i]*g[i][n/i]%mod*g[i][m/i]%mod)%mod;
for(int l=m/B+2, r; l<=n; l=r+1) {
r = min(n, min(n/(n/l),m/(m/l)));
ans = (0ll+ans+h[n/r][m/r][r]-h[n/r][m/r][l-1])%mod;
}
return (ans+mod)%mod;
}
int func(int i,int a,int b) {
if(a>=g[i].size() || b>=g[i].size()) return 0;
return 1ll*f[i]*g[i][a]%mod*g[i][b]%mod;
}
void sieve() {
phi[1]=mu[1]=1;
for(int i=2;i<=maxn-5;++i) {
if(!is[i]) p[++pc]=i,
mu[i]=-1, phi[i]=i-1;
for(int j=1; j<=pc && i*p[j]<=maxn-5; ++j) {
is[i*p[j]] = true, mu[i*p[j]]=-mu[i];
if(i%p[j]==0) {
phi[i*p[j]] = phi[i]*p[j];
mu[i*p[j]]=0; break;
} phi[i*p[j]] = phi[i]*(p[j]-1);
}
}
for(int i=1;i<=maxn-5;++i) {
const int coe = 1ll*i*inv(phi[i])%mod;
g[i].emplace_back(0);
for(int j=i;j<=maxn-5;j+=i)
f[j] = (1ll*coe*mu[j/i]+f[j])%mod,
g[i].emplace_back((g[i][j/i-1]+phi[j])%mod);
}
for(int a=1;a<=B;++a) for(int b=1;b<=B;++b)
for(int i=1;i<=maxn-5;++i)
h[a][b][i] = (h[a][b][i-1]+func(i,a,b))%mod;
}
int main() {
sieve();
for(int T=read(9); T; --T) {
int n=read(9), m=read(9);
print(beelzebul(n,m),'\n');
}
return 0;
}
标签:frac,limits,int,sum,varphi,毒瘤,cdot,之神,P4240 来源: https://www.cnblogs.com/AWhiteWall/p/16448866.html