LeetCode115 不同的子序列(dp)
作者:互联网
\(dp[i][j]\) 表示字符串 \(s[:i]\) 中包子序列 \(t[:j]\) 的数量
对于当前字符 \(s[i]\) 与 \(t[j]\):
- 如果 \(s[i] == t[j]\),\(dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]\)
- 如果 \(s[i] != t[j]\),\(dp[i][j] = dp[i - 1][j]\)
注意任意字符串 \(s[:i]\) 均包含一个空串,即 \(dp[i][0] = 1\)
class Solution(object):
def numDistinct(self, s, t):
"""
:type s: str
:type t: str
:rtype: int
"""
m, n = len(s), len(t)
dp = [[0 for i in range(n + 1)] for j in range(m + 1)]
for i in range(m + 1): dp[i][0] = 1
for i in range(1, m + 1):
for j in range(1, n + 1):
if s[i - 1] == t[j - 1]:
dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]
else:
dp[i][j] = dp[i - 1][j]
return dp[m][n]
标签:LeetCode115,range,str,序列,type,dp 来源: https://www.cnblogs.com/solvit/p/16422892.html