其他分享
首页 > 其他分享> > 深度学习跟SLAM的结合点

深度学习跟SLAM的结合点

作者:互联网

1、用深度学习方法替换传统SLAM中的一个/几个模块

2、在传统SLAM之上加入语义信息(毕设相关)

3、端到端的SLAM

 

2.1 Semantc SLAM

  code

  特点:

 

 

 

 2.2 ORB-SLAM2+YOLO3 

  Qi X, Yang S, Yan Y. Deep Learning Based Semantic Labelling of 3D Point Cloud in Visual SLAM[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2018, 428(1): 012023.
  国防科技大学高性能计算国家重点实验室

  code:orb-slam2_with_semantic_label

 

 

 

 2.3  Meaningful maps with object-oriented semantic mappng

  Sünderhauf N, Pham T T, Latif Y, et al. Meaningful maps with object-oriented semantic mapping[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017: 5079-5085.

  ORB-SLAM2+SSD

 

 

 

2.4 DynaSLAM: Tracking, mapping, and inpainting in dynamic scenes

  ORB-SLAM2 + Mask R-CNN

  code:DynaSLAM

 

 

 

 

2.5 DA-RNN: Semantic mapping with data associated recurrent neural networks

  RNN+CNN 语义分割

  DA-RNN

  

 

   

 

 

2.6 Ds-slam: A semantic visual slam towards dynamic environments

  SegNet+ORB SLAM2

  Ds-SLAM

2.7 Maskfusion: Real-time recognition, tracking and reconstruction of multiple moving objects

  MaskFusion + ElasticFusion

  MaskFusion

标签:used,semantic,结合点,语义,SLAM2,SLAM,深度,ORB
来源: https://www.cnblogs.com/bupt213/p/12088409.html