其他分享
首页 > 其他分享> > [atARC142E]Pairing Wizards

[atARC142E]Pairing Wizards

作者:互联网

对于限制$(x,y)$,不妨假设$b_{x}\ge b_{y}$,即等价于$\begin{cases}a_{x},a_{y}\ge b_{y}\\\max(a_{x},a_{y})\ge b_{x}\end{cases}$

前者可以直接调整$a_{x},a_{y}$使之成立,并在调整后删除后者已成立的限制

此时,限制$(x,y)$均满足$a_{y}\ge b_{y}$且$a_{x}<b_{x}$,即构成一张二分图

在此基础上,显然可以转换为最小割,具体建图如下——

1.对于$a_{x}<b_{x}$的点,从$S$向$x$连流量为$b_{x}-a_{x}$的边

2.对于$a_{y}\ge b_{y}$的点,$\forall i\in [1,A-a_{y}]$从$(y,i)$向$T$连流量为$1$的边(其中$A$为值域)

3.对于$a_{y}\ge b_{y}$的点,$\forall i\in [2,A-a_{y}]$从$(y,i)$向$(y,i-1)$连流量为$\infty$的边

4.对于限制$(x,y)$,从$x$向$(y,b_{x}-a_{y})$连流量为$\infty$的边

(其实两侧是对称的,但左侧的限制中$b_{x}$已经固定,可以简化建图)

时间复杂度为$o({\rm MaxFlow}\{nA,nA+n^{2}\})$,可以通过

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 #define N 105
 4 #define M 11000
 5 #define oo 0x3f3f3f3f
 6 int n,m,T,E,x,y,ans,a[N],b[N],head[M],Head[M],d[M];
 7 queue<int>q;vector<int>e[N];
 8 struct List{int nex,to,len;}edge[M<<3];
 9 void add(int x,int y,int z){
10     edge[E]=List{head[x],y,z},head[x]=E++;
11     edge[E]=List{head[y],x,0},head[y]=E++;
12 }
13 bool bfs(){
14     memset(d,-1,sizeof(d));
15     d[0]=0,q.push(0);
16     while (!q.empty()){
17         int k=q.front();q.pop();
18         for(int i=head[k];i!=-1;i=edge[i].nex)
19             if ((edge[i].len)&&(d[edge[i].to]<0)){
20                 d[edge[i].to]=d[k]+1,q.push(edge[i].to);
21             }
22     }
23     return d[T]>=0;
24 }
25 int dfs(int k,int s){
26     if (k==T)return s;
27     int ans=0;
28     for(int &i=head[k];i!=-1;i=edge[i].nex)
29         if ((edge[i].len)&&(d[edge[i].to]==d[k]+1)){
30             int p=dfs(edge[i].to,min(s,edge[i].len));
31             if (p){
32                 edge[i].len-=p,edge[i^1].len+=p,s-=p,ans+=p;
33                 if (!s)return ans;
34             }
35         }
36     return ans;
37 }
38 int main(){
39     scanf("%d",&n),T=101*n+1;
40     for(int i=1;i<=n;i++)scanf("%d%d",&a[i],&b[i]);
41     scanf("%d",&m);
42     for(int i=1;i<=m;i++){
43         scanf("%d%d",&x,&y);
44         if (b[x]<b[y])swap(x,y);
45         if (a[x]<b[y])ans+=b[y]-a[x],a[x]=b[y];
46         if (a[y]<b[y])ans+=b[y]-a[y],a[y]=b[y];
47         e[x].push_back(y);
48     }
49     memset(head,-1,sizeof(head));
50     for(int i=1;i<=n;i++)
51         for(int j=1;j<=100-a[i];j++){
52             add(j*n+i,T,1);
53             if (j>1)add(j*n+i,(j-1)*n+i,oo);
54         }
55     for(int i=1;i<=n;i++)
56         if (a[i]<b[i]){
57             add(0,i,b[i]-a[i]);
58             for(int j:e[i])
59                 if (a[j]<b[i])add(i,(b[i]-a[j])*n+j,oo);
60         }
61     memcpy(Head,head,sizeof(head));
62     while (bfs()){
63         ans+=dfs(0,oo);
64         memcpy(head,Head,sizeof(head));
65     }
66     printf("%d\n",ans);
67     return 0;
68 }
View Code

 

标签:return,int,Pairing,len,edge,ge,Wizards,ans,atARC142E
来源: https://www.cnblogs.com/PYWBKTDA/p/16399150.html