其他分享
首页 > 其他分享> > 主动学习(Active Learning) 概述、策略和不确定性度量

主动学习(Active Learning) 概述、策略和不确定性度量

作者:互联网

主动学习是指对需要标记的数据进行优先排序的过程,这样可以确定哪些数据对训练监督模型产生最大的影响。

主动学习背后的关键思想是,如果允许机器学习算法选择它学习的数据,这样就可以用更少的训练标签实现更高的准确性。——Active Learning Literature Survey, Burr Settles

主动学习简介

主动学习不是一次为所有的数据收集所有的标签,而是对模型理解最困难的数据进行优先级排序,并仅对那些数据要求标注标签。然后模型对少量已标记的数据进行训练,训练完成后再次要求对最不确定数据进行更多的标记。

通过对不确定的样本进行优先排序,模型可以让专家(人工)集中精力提供最有用的信息。这有助于模型更快地学习,并让专家跳过对模型没有太大帮助的数据。这样在某些情况下,可以大大减少需要从专家那里收集的标签数量,并且仍然可以得到一个很好的模型。这样可以为机器学习项目节省时间和金钱!

主动学习的策略

有很多论文介绍了多种如何确定数据点以及如何在方法上进行迭代的方法。本文中将介绍最常见和最直接的方法,因为这是最简单也最容易理解的。

在未标记的数据集上使用主动学习的步骤是:

通过这种方式,随着模型变得越来越好,我们可以不断优化标签策略。

基于数据流的主动学习方法

在基于流的主动学习中,所有训练样本的集合以流的形式呈现给算法。每个样本都被单独发送给算法。算法必须立即决定是否标记这个示例。从这个池中选择的训练样本由oracle(人工的行业专家)标记,在显示下一个样本之前,该标记立即由算法接收。

完整文章:

https://avoid.overfit.cn/post/26eeaad603b540dbba4962c9179f6c64

标签:标记,标签,模型,学习,Learning,Active,主动,数据,度量
来源: https://www.cnblogs.com/deephub/p/16396349.html