其他分享
首页 > 其他分享> > LeetCode/区间合并和日程表

LeetCode/区间合并和日程表

作者:互联网

1. 静态区间合并

先按左边界排序,再两两比较合并

class Solution {
public:
    vector<vector<int>> merge(vector<vector<int>>& intervals) {
        if (intervals.size() == 0) return {};
        sort(intervals.begin(), intervals.end());//按左边界排序
        vector<vector<int>> merged;//需要空间存储合并结果
        for (int i = 0; i < intervals.size(); ++i) {
            int L = intervals[i][0], R = intervals[i][1];
            //如果存储空间没有元素,或末元素右边界小于新元素左边界,加入区间
            if (!merged.size() || merged.back()[1] < L) 
                merged.push_back({L, R});
            //否则进行合并,右边界更新为两合并元素较大值
            else  merged.back()[1] = max(merged.back()[1], R);
        }
        return merged;
    }
};

2. 我的日程安排表I

如果可以将日程(区间)安排成功添加到日历(区间集合)中而不会导致重复预订(存在交集)
返回 true ,否则,返回 false 并且不要将该日程安排添加到日历中

暴力法

将新加入区间,与已有区间逐个比较,判断有无交集即可

暴力法
vector<pair<int, int>> vec;
bool book(int start, int end) {
        for (auto& [x, y] : vec)//遍历已存储所有的区间
            if (x < end && y > start) return false;//判断新加入区间是否有交集
        vec.emplace_back(pair{start, end});//存储新的区间
        return true;
    }
暴力法优化(二分)

使用map存储区间,利用其有序的结构特点,进行二分查找并比较

map+二分
class MyCalendar {
public:
    map<int, int> pool;
    MyCalendar() {}
    
    bool book(int start, int end) {
        // lower_bound()返回值是一个迭代器,返回指向左边界>=end的第一个值的位置
        map<int, int>::iterator it = pool.lower_bound(end);//二分查找需要比较的位置,是得到位置的前一个位置
        // 判断是否为第一个元素,或前一个元素的结束时间<= start
        if (it == pool.begin() || (--it)->second <= start) {//右边界在所有区间左侧或者左边界在前一个元素右边界之后
            pool[start] = end;//插入该区间
            return true;
        }
        return false;
    }
};
插旗法

通过插旗计数来验证左边界前的区间是否闭合,以及是否有位置落在新加入区间之间
使用map结构自动排序

插旗法
class MyCalendar {
public:
    MyCalendar() {}
    bool book(int start, int end) {
        int ans = 0;
        int left = 0;//从前往后计数值
        for (auto &[pos, freq] : cnt) {
            if(pos<=start) left += freq; //计前缀和
            else if(pos<end) return false;//说明start和end间必然存在其他区间
        }
        if(left==0){ //如果计数为0说明前面区间皆已闭合
        //插入新区间
            cnt[start]++;//起点加一
            cnt[end]--;//终点减一 
            return true;}
        else return false;
    }
private:
    map<int, int> cnt;//这里使用map自动排序
};

3. 我的日程安排表II(插旗法)

如果要添加的时间内不会导致三重预订时,则可以存储这个新的日程安排
这里我们不用去判断,直接尝试加入,看累加值是否会等于3即可,注意插入失败即时撤回

    bool book(int start, int end) {
        int ans = 0;
        cnt[start]++;//起点加一,先尝试加入
        cnt[end]--;//终点减一
        for (auto &[pos, freq] : cnt) {
            ans += freq; //从前往后累加
            if(ans==3){cnt[start]--;cnt[end]++;return false;}//撤回并返回插入失败
        }
        return true;
    }

4. 我的日程安排表III(插旗法)

从前往后求差分数组前缀和的时候,记录一个最大值即可

int book(int start, int end) {
        int ans = 0;
        int maxBook = 0;
        cnt[start]++;//起点加一
        cnt[end]--;//终点减一
        for (auto &[_, freq] : cnt) {
            maxBook += freq; //从前往后累加
            ans = max(maxBook, ans); //记录最大值
        }
        return ans;
    }

标签:cnt,end,日程表,int,合并,start,ans,区间,LeetCode
来源: https://www.cnblogs.com/929code/p/16369464.html