洛谷 P1003铺地毯题解--zhengjun
作者:互联网
题目描述
为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯。一共有 \(n\) 张地毯,编号从 \(1\) 到 \(n\)。现在将这些地毯按照编号从小到大的顺序平行于坐标轴先后铺设,后铺的地毯覆盖在前面已经铺好的地毯之上。
地毯铺设完成后,组织者想知道覆盖地面某个点的最上面的那张地毯的编号。注意:在矩形地毯边界和四个顶点上的点也算被地毯覆盖。
输入格式
输入共 \(n + 2\) 行。
第一行,一个整数 \(n\),表示总共有 \(n\) 张地毯。
接下来的 \(n\) 行中,第 \(i+1\) 行表示编号 \(i\) 的地毯的信息,包含四个正整数 \(a ,b ,g ,k,\)每两个整数之间用一个空格隔开,分别表示铺设地毯的左下角的坐标 \((a, b)\) 以及地毯在 \(x\) 轴和 \(y\) 轴方向的长度。
第 \(n + 2\) 行包含两个正整数 \(x\) 和 \(y\),表示所求的地面的点的坐标 \((x, y)\)。
输出格式
输出共 \(1\) 行,一个整数,表示所求的地毯的编号;若此处没有被地毯覆盖则输出 -1
。
输入输出样例
输入 #1
3
1 0 2 3
0 2 3 3
2 1 3 3
2 2
输出 #1
3
输入 #2
3
1 0 2 3
0 2 3 3
2 1 3 3
4 5
输出 #2
-1
说明/提示
【样例解释 1】
如下图,\(1\) 号地毯用实线表示,\(2\) 号地毯用虚线表示,\(3\) 号用双实线表示,覆盖点 \((2,2)\) 的最上面一张地毯是 \(3\) 号地毯。
【数据范围】
对于 \(30\%\) 的数据,\(n \le 2\)。
对于 \(50\%\) 的数据,\(0 \le a, b, g, k \le 100\)。
对于 \(100\%\) 的数据,\(0 \le n \le 10^4\),\(0 \le a, b, g, k \le 10^5\)。
\(noip2011\) 提高组 \(day1\) 第 \(1\) 题。
思路
这是一道模拟题,首先用一个数组储存 \(a,b,g,k\) ,找到最后一个铺在那个点上的地毯,直接输出,结束。
代码
#include<bits/stdc++.h>
#define maxn 100050
using namespace std;
inline void read(register int &x)
{
x=0;
register char c=getchar();
while(c<'0'||c>'9'){c=getchar();}
while(c>='0'&&c<='9'){x=(x<<3)+(x<<1)+(c^48);c=getchar();}
}
int n,a[maxn],b[maxn],g[maxn],k[maxn],x,y;
int main()
{
read(n);
for(int i=1;i<=n;i++)
read(a[i]),read(b[i]),read(g[i]),read(k[i]);
read(x);read(y);
for(int i=n;i>=1;i--)
{
if(a[i]<=x&&b[i]<=y&&a[i]+g[i]>=x&&b[i]+k[i]>=y)//铺在那个点上面
{
printf("%d",i);
return 0;//直接结束
}
}
printf("-1");//这个点上面没有地毯
return 0;
}
谢谢--zhengjun
标签:输出,le,洛谷,覆盖,--,题解,编号,地毯 来源: https://www.cnblogs.com/A-zjzj/p/16364266.html