其他分享
首页 > 其他分享> > 矩阵乘积的意义

矩阵乘积的意义

作者:互联网

Matrix multiplication

Matrix multiplies vector

Column vector

\[\begin{bmatrix} 1&2&1\\ 2&1&3\\ 1&0&2 \end{bmatrix} \begin{bmatrix}1\\2\\0\end{bmatrix} = 1\begin{bmatrix}1\\2\\1\end{bmatrix}+2\begin{bmatrix}2\\1\\0\end{bmatrix}+0\begin{bmatrix}1\\3\\2\end{bmatrix} = \begin{bmatrix}5\\4\\1\end{bmatrix}.\]

Row vector

\[\begin{bmatrix}1&2&0\end{bmatrix} \begin{bmatrix} 1&2&1\\ 2&1&3\\ 1&0&2 \end{bmatrix} =1\begin{bmatrix}1&2&1\end{bmatrix}+2\begin{bmatrix}2&1&3\end{bmatrix}+0\begin{bmatrix}1&0&2\end{bmatrix}=\begin{bmatrix}5&4&7\end{bmatrix}.\]

Matrix multiplies matrix

First situation:

\[\begin{bmatrix} 1&2&1\\ 1&0&-1\\ \end{bmatrix} A_{3 \times n} = \begin{bmatrix} row_1\\ row_2\\ \end{bmatrix} A_{3 \times n} = \begin{bmatrix} row_1 A_{3 \times n}\\ row_2 A_{3 \times n}\\ \end{bmatrix} = B_{2 \times n}.\]

Second situation:

\[A_{m \times 3} \begin{bmatrix} 1&1\\ 2&0\\ 1&-1\\ \end{bmatrix} = A_{m \times 3} \begin{bmatrix} column_1&column_2 \end{bmatrix} =\begin{bmatrix} A_{m \times 3}column_1 & A_{m \times 3} column_2 \end{bmatrix} = B_{m \times 2}.\]

标签:begin,end,乘积,意义,矩阵,times,bmatrix,row,matrix
来源: https://www.cnblogs.com/taoqc/p/16314361.html