ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

动手学数据分析 Task3 学习笔记

2022-05-21 20:00:08  阅读:292  来源: 互联网

标签:数据分析 ... Task3 NaN 笔记 result female Mr male


复习:在前面我们已经学习了Pandas基础,第二章我们开始进入数据分析的业务部分,在第二章第一节的内容中,我们学习了数据的清洗,这一部分十分重要,只有数据变得相对干净,我们之后对数据的分析才可以更有力。而这一节,我们要做的是数据重构,数据重构依旧属于数据理解(准备)的范围。

开始之前,导入numpy、pandas包和数据

# 导入基本库
import numpy as np
import pandas as pd
# 载入data文件中的:train-left-up.csv
data=pd.read_csv("data/train-left-up.csv")

2 第二章:数据重构

2.4 数据的合并

2.4.1 任务一:将data文件夹里面的所有数据都载入,观察数据的之间的关系

#写入代码
dleftup=pd.read_csv('data/train-left-up.csv')
dleftdown=pd.read_csv('data/train-left-down.csv')
drightup=pd.read_csv('data/train-right-up.csv')
drightdown=pd.read_csv('data/train-right-down.csv')
drightup
Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 male 22.0 1 0 A/5 21171 7.2500 NaN S
1 female 38.0 1 0 PC 17599 71.2833 C85 C
2 female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
3 female 35.0 1 0 113803 53.1000 C123 S
4 male 35.0 0 0 373450 8.0500 NaN S
... ... ... ... ... ... ... ... ...
434 male 50.0 1 0 13507 55.9000 E44 S
435 female 14.0 1 2 113760 120.0000 B96 B98 S
436 female 21.0 2 2 W./C. 6608 34.3750 NaN S
437 female 24.0 2 3 29106 18.7500 NaN S
438 male 64.0 1 4 19950 263.0000 C23 C25 C27 S

439 rows × 8 columns

【提示】结合之前我们加载的train.csv数据,大致预测一下上面的数据是什么

2.4.2:任务二:使用concat方法:将数据train-left-up.csv和train-right-up.csv横向合并为一张表,并保存这张表为result_up

#写入代码
result_up=pd.concat([dleftup,drightup],axis=1)
result_up
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S
... ... ... ... ... ... ... ... ... ... ... ... ...
434 435 0 1 Silvey, Mr. William Baird male 50.0 1 0 13507 55.9000 E44 S
435 436 1 1 Carter, Miss. Lucile Polk female 14.0 1 2 113760 120.0000 B96 B98 S
436 437 0 3 Ford, Miss. Doolina Margaret "Daisy" female 21.0 2 2 W./C. 6608 34.3750 NaN S
437 438 1 2 Richards, Mrs. Sidney (Emily Hocking) female 24.0 2 3 29106 18.7500 NaN S
438 439 0 1 Fortune, Mr. Mark male 64.0 1 4 19950 263.0000 C23 C25 C27 S

439 rows × 12 columns

2.4.3 任务三:使用concat方法:将train-left-down和train-right-down横向合并为一张表,并保存这张表为result_down。然后将上边的result_up和result_down纵向合并为result。

#写入代码
result_down=pd.concat([dleftdown,drightdown],axis=1)
result=pd.concat([result_up,result_down])
result
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S
... ... ... ... ... ... ... ... ... ... ... ... ...
447 887 0 2 Montvila, Rev. Juozas male 27.0 0 0 211536 13.0000 NaN S
448 888 1 1 Graham, Miss. Margaret Edith female 19.0 0 0 112053 30.0000 B42 S
449 889 0 3 Johnston, Miss. Catherine Helen "Carrie" female NaN 1 2 W./C. 6607 23.4500 NaN S
450 890 1 1 Behr, Mr. Karl Howell male 26.0 0 0 111369 30.0000 C148 C
451 891 0 3 Dooley, Mr. Patrick male 32.0 0 0 370376 7.7500 NaN Q

891 rows × 12 columns

pandas.concat(objs, # 合并对象
axis=0, # 合并方向,默认是0纵轴方向
join='outer', # 合并取的是交集inner还是并集outer
ignore_index=False, # 合并之后索引是否重新
keys=None, # 在行索引的方向上带上原来数据的名字;主要是用于层次化索引,可以是任意的列表或者数组、元组数据或者列表数组
levels=None, # 指定用作层次化索引各级别上的索引,如果是设置了keys
names=None, # 行索引的名字,列表形式
verify_integrity=False, # 检查行索引是否重复;有则报错
sort=False, # 对非连接的轴进行排序
copy=True # 是否进行深拷贝
)

2.4.4 任务四:使用DataFrame自带的方法join方法和append:完成任务二和任务三的任务

#写入代码
result_up_test=dleftup.join(drightup)
result_down_test=dleftdown.join(drightdown)
result_2=result_up_test.append(result_down_test,ignore_index=True)
result_2
C:\Users\ThinkPad\AppData\Local\Temp\ipykernel_4824\2842206337.py:4: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.
  result_2=result_up_test.append(result_down_test,ignore_index=True)
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S
... ... ... ... ... ... ... ... ... ... ... ... ...
886 887 0 2 Montvila, Rev. Juozas male 27.0 0 0 211536 13.0000 NaN S
887 888 1 1 Graham, Miss. Margaret Edith female 19.0 0 0 112053 30.0000 B42 S
888 889 0 3 Johnston, Miss. Catherine Helen "Carrie" female NaN 1 2 W./C. 6607 23.4500 NaN S
889 890 1 1 Behr, Mr. Karl Howell male 26.0 0 0 111369 30.0000 C148 C
890 891 0 3 Dooley, Mr. Patrick male 32.0 0 0 370376 7.7500 NaN Q

891 rows × 12 columns

dataframe.join(other, # 待合并的另一个数据框
on=None, # 连接的键
how='left', # 连接方式:‘left’, ‘right’, ‘outer’, ‘inner’ 默认是left
lsuffix='', # 左边(第一个)数据框相同键的后缀
rsuffix='', # 第二个数据框的键的后缀
sort=False) # 是否根据连接的键进行排序;默认False

DataFrame.append(other,
ignore_index=False,
verify_integrity=False,
sort=False)

参数解释:
other:待合并的数据。可以是pandas中的DataFrame、series,或者是Python中的字典、列表这样的数据结构
ignore_index:是否忽略原来的索引,生成新的自然数索引
verify_integrity:默认是False,如果值为True,创建相同的index则会抛出异常的错误
sort:boolean,默认是None。如果self和other的列没有对齐,则对列进行排序,并且属性只在版本0.23.0中出现。

2.4.5 任务五:使用Panads的merge方法和DataFrame的append方法:完成任务二和任务三的任务

#写入代码
dup=dleftup.merge(drightup,left_index=True,right_index=True)
ddown=dleftdown.merge(drightdown,left_index=True,right_index=True)
result_3=dup.append(ddown)
result_3
C:\Users\ThinkPad\AppData\Local\Temp\ipykernel_4824\3296784267.py:4: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.
  result_3=dup.append(ddown)
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S
... ... ... ... ... ... ... ... ... ... ... ... ...
447 887 0 2 Montvila, Rev. Juozas male 27.0 0 0 211536 13.0000 NaN S
448 888 1 1 Graham, Miss. Margaret Edith female 19.0 0 0 112053 30.0000 B42 S
449 889 0 3 Johnston, Miss. Catherine Helen "Carrie" female NaN 1 2 W./C. 6607 23.4500 NaN S
450 890 1 1 Behr, Mr. Karl Howell male 26.0 0 0 111369 30.0000 C148 C
451 891 0 3 Dooley, Mr. Patrick male 32.0 0 0 370376 7.7500 NaN Q

891 rows × 12 columns

merge(
left,
right,
how="inner",
on=None,
left_on=None,
right_on=None,
left_index=False,
right_index=False,
sort=False,
suffixes=("_x", "_y"),
copy=True,
indicator=False,
validate=None,
)

【思考】对比merge、join以及concat的方法的不同以及相同。思考一下在任务四和任务五的情况下,为什么都要求使用DataFrame的append方法,如何只要求使用merge或者join可不可以完成任务四和任务五呢?

DataFrame有一个实例方法join,相当于merge方法的参数left_index=True和right_index=True
append为添加行数,join可以通过axis设置左右合并
merge可以通过index设置,来实现左右合并和上下合并
join可以通过axis设置,来实现左右合并和上下合并。

2.4.6 任务六:完成的数据保存为result.csv

#写入代码
result_3.to_csv('data/result.csv')

2.5 换一种角度看数据

2.5.1 任务一:将我们的数据变为Series类型的数据

#写入代码

result_stack=result_3.stack()
result_stack
0    PassengerId                          1
     Survived                             0
     Pclass                               3
     Name           Braund, Mr. Owen Harris
     Sex                               male
                             ...           
451  SibSp                                0
     Parch                                0
     Ticket                          370376
     Fare                              7.75
     Embarked                             Q
Length: 9826, dtype: object

stack()即“堆叠”,作用是将列旋转到行
unstack()即stack()的反操作,将行旋转到列

result_3
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S
... ... ... ... ... ... ... ... ... ... ... ... ...
447 887 0 2 Montvila, Rev. Juozas male 27.0 0 0 211536 13.0000 NaN S
448 888 1 1 Graham, Miss. Margaret Edith female 19.0 0 0 112053 30.0000 B42 S
449 889 0 3 Johnston, Miss. Catherine Helen "Carrie" female NaN 1 2 W./C. 6607 23.4500 NaN S
450 890 1 1 Behr, Mr. Karl Howell male 26.0 0 0 111369 30.0000 C148 C
451 891 0 3 Dooley, Mr. Patrick male 32.0 0 0 370376 7.7500 NaN Q

891 rows × 12 columns

#写入代码
type(result_stack)
pandas.core.series.Series

标签:数据分析,...,Task3,NaN,笔记,result,female,Mr,male
来源: https://www.cnblogs.com/demimute/p/16295858.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有