其他分享
首页 > 其他分享> > pandas - 合并

pandas - 合并

作者:互联网

学习目标

如果你的数据由多张表组成,那么有时候需要将不同的内容合并在一起分析

1 pd.concat实现数据合并

比如我们将刚才处理好的哑变量与原数据合并

pd.concat([data, dummaries], axis=1)

2 pd.merge

pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None,left_index=False, right_index=False, sort=True,suffixes=('_x', '_y'), copy=True, indicator=False,validate=None)

  • 可以指定按照两组数据的共同键值对合并或者左右各自
  • left: A DataFrame object
  • right: Another DataFrame object
  • on: Columns (names) to join on. Must be found in both the left and right DataFrame objects.
  • left_on=None, right_on=None:指定左右键
Merge method SQL Join Name Description
left LEFT OUTER JOIN Use keys from left frame only
right RIGHT OUTER JOIN Use keys from right frame only
outer FULL OUTER JOIN Use union of keys from both frames
inner INNER JOIN Use intersection of keys from both frames

3 案例:pd.merge合并

left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
                        'key2': ['K0', 'K1', 'K0', 'K1'],
                        'A': ['A0', 'A1', 'A2', 'A3'],
                        'B': ['B0', 'B1', 'B2', 'B3']})

right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
                        'key2': ['K0', 'K0', 'K0', 'K0'],
                        'C': ['C0', 'C1', 'C2', 'C3'],
                        'D': ['D0', 'D1', 'D2', 'D3']})

# 默认内连接
result = pd.merge(left, right, on=['key1', 'key2'])

1、左连接

result = pd.merge(left, right, how='left', on=['key1', 'key2'])

2、右连接

result = pd.merge(left, right, how='right', on=['key1', 'key2'])

3、外链接

result = pd.merge(left, right, how='outer', on=['key1', 'key2'])

标签:None,right,合并,merge,K0,pd,pandas,left
来源: https://blog.csdn.net/apollo_miracle/article/details/88414002