ONNXRuntime学习笔记(三)
作者:互联网
接上一篇完成的pytorch模型训练结果,模型结构为ResNet18+fc,参数量约为11M,最终测试集Acc达到94.83%。接下来有分两个部分:导出onnx和使用onnxruntime推理。
一、pytorch导出onnx
直接放函数吧,这部分我是直接放在test.py里面的,直接从dataloader中拿到一个batch的数据走一遍推理即可。
def export_onnx(net, testloader, output_file):
net.eval()
with torch.no_grad():
for data in testloader:
images, labels = data
torch.onnx.export(net,
(images),
output_file,
training=False,
do_constant_folding=True,
input_names=["img"],
output_names=["output"],
dynamic_axes={"img": {0: "b"},"output": {0: "b"}}
)
print("onnx export done!")
break
上面函数中几个比较重要的参数:do_constant_folding是常量折叠,建议打开;输入张量通过一个tuple传入,并且最好指定每个输入和输出的名称,此外,为保证使用onnxruntime推理的时候batchsize可变,dynamic_axes的第一维需要像上述一样设置为动态的。如果是全卷积做分割的网络,类似的输入h和w也应该是动态的。
单独运行test.py计算测试集效果和平均相应时间,结果为:
Test Acc is: 94.83%
Average response time cost: 0.10121344916428192
二、使用onnxruntime推理
这里我们使用gpu版本的onnxruntime库进行推理,其python包可直接pip install onnxruntime-gpu
安装。onnxruntime推理代码和测试集推理代码很类似,如下:
import numpy as np
import onnxruntime as ort
import argparse, os
from lib import CIFARDataset
def onnxruntime_test(session, testloader):
print("Start Testing!")
input_name = session.get_inputs()[0].name
correct = 0
total = 0 # 计数归零(初始化)
for data in testloader:
images, labels = data
images, labels = images.numpy(), labels.numpy()
outputs = session.run(None, {input_name:images})
predicted = np.argmax(outputs[0], axis=1) # 取得分最高的那个类
total += labels.shape[0] # 累加样本总数
correct += (predicted == labels).sum() # 累加预测正确的样本个数
acc = correct / total
print('ONNXRuntime Test Acc is: %.2f%%' % (100*acc))
if __name__ == '__main__':
# 命令行参数解析
parser = argparse.ArgumentParser("CNN backbone on cifar10")
parser.add_argument('--onnx', default='./output/test_resnet18_10_autoaug/densenet_best.onnx')
args = parser.parse_args()
NUM_CLASS =10
BATCH_SIZE = 128 # 批处理尺寸(batch_size)
# 数据集迭代器
data_path="./data"
dataset = CIFARDataset(dataset_path=data_path, batchsize=BATCH_SIZE)
_, testloader = dataset.get_cifar10_dataloader()
# 构建session
sess = ort.InferenceSession(args.onnx, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
#onnxruntime推理
import time
start = time.time()
onnxruntime_test(sess, testloader)
end = time.time()
print("Average response time cost: ", (end-start)/len(testloader))
使用onnxruntime加载导出的onnx模型,计算测试集效果和平均响应时间,结果为:
ONNXRuntime Test Acc is: 94.83%
Average response time cost: 0.07324151147769976
三、小结
分析上面的pytorch和onnxruntime的测试结果可知,最终测试集效果是一致的,Acc均为94.83%,但onnxruntime的效率更高,耗时是pytorch的75%,但比最初目标设定的50ms高,需要进一步优化,两个方向:模型量化或并行化推理。下一篇再分析。
标签:ONNXRuntime,onnx,笔记,学习,onnxruntime,推理,time,data,testloader 来源: https://www.cnblogs.com/lee-zq/p/16211934.html