其他分享
首页 > 其他分享> > ES doc values讲解

ES doc values讲解

作者:互联网

列式存储——Doc Values
Doc values的存在是因为倒排索引只对某些操作是高效的。 倒排索引的优势在于查找包含某个项的文档,而对于从另外一个方向的相反操作并不高效,即:确定哪些项是否存在单个文档里,聚合需要这种次级的访问模式。

以排序来举例——虽然倒排索引的检索性能非常快,但是在字段值排序时却不是理想的结构。

在搜索的时候,我们能通过搜索关键词快速得到结果集。
当排序的时候,我们需要倒排索引里面某个字段值的集合。换句话说,我们需要转置倒排索引。
转置 结构经常被称作 列式存储 。它将所有单字段的值存储在单数据列中,这使得对其进行操作是十分高效的,例如排序、聚合等操作。

在Elasticsearch中,Doc Values就是一种列式存储结构,在索引时与倒排索引同时生成。也就是说Doc Values和倒排索引一样,基于 Segement生成并且是不可变的。同时Doc Values和倒排索引一样序列化到磁盘。

Doc Values常被应用到以下场景:

对一个字段进行排序
对一个字段进行聚合
某些过滤,比如地理位置过滤
某些与字段相关的脚本计算
下面举一个例子,来讲讲它是如何运作的

 

  假设我们需要计算出brown出现的次数

GET /my_index/_search
{
    "query":{
        "match":{
            "body":"brown"
        }
    },
    "aggs":{
        "popular_terms":{
            "terms":{
                "field":"body"
            }
        }
    },
   "size" : 0
}

  

下面来分析上述请求在ES中是如何来进行查询的:

  1. 定位数据范围。通过倒排索引,来找到所有包含brown的doc_id。
  2. 进行聚合计算。借助doc_id在doc_values中定位到为brown的字段,此时进行聚合累加得到计算结果。browm的count=2。

 

标签:brown,倒排,doc,索引,values,Doc,Values,ES
来源: https://www.cnblogs.com/juniorMa/p/16198364.html