其他分享
首页 > 其他分享> > 动态规划--个人笔记

动态规划--个人笔记

作者:互联网

 动态规划的解题步骤 1 定义状态。 2 寻找状态转移方程。 3 前两步联立,计算出所需要的值。   根据数学归纳法的三步走,我们试着证明一下第一种状态转移方程是正确的,也就是自上而下的状态转移方式。 第一步,我们已知在这种状态转移方式中,第一个阶段中的所有 dp 值都可以轻松获得,也就是可以很轻松的初始化 dp[1][1] 的值,应该等于 val[1][1] 的值。 第二步,我们假设如果第 i-1 阶段中的所有状态值,我们都正确的得到了。也就是正确的得到了从起始点到 i-1 层中每个点的路径最大和值。那根据状态转移方程:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j + 1]) + val[i][j] 来说,就可以正确的计算得到第 i 个阶段中的所有状态值。 第三步,两步联立,就可得出结论,所有阶段中的状态值计算均正确。那么,从起始点到底边的路径最大和值,就在最后一个阶段的若干个状态值中。 以上就是我们使用数学归纳法,证明数字三角形问题的第一种状态转移方程正确性的过程。这个过程呢,比较简单,那是因为数字三角形问题本身就不难。当面对更难一些的动态规划问题的时候,将这种证明方法,加入到你学习动态规划算法的过程中,你会收获奇效的。

 

 

标签:状态,方程,正确,--,笔记,状态值,动态,转移,dp
来源: https://www.cnblogs.com/prader6/p/16165085.html