jdk8新特性以及微服务:微服务保护和分步式事务
作者:互联网
JAVA8其他新特性
Java 8 (又称为 jdk 1.8) 是 Java 语言开发的一个主要版本。 Java 8 是oracle公司于2014年3月发布,可以看成是自Java 5 以 来最具革命性的版本
。Java 8为Java语言、编译器、类库、开发 工具与JVM带来了大量新特性。
Lambda表达式
Lambda 是一个匿名函数,我们可以把 Lambda 表达式理解为是一段可以传递的代码(将代码像数据一样进行传递)。使用它可以写出更简洁、更 灵活的代码。作为一种更紧凑的代码风格,使Java的语言表达能力得到了 提升。
Lambda表达式是一个接口的实例,该接口应当是一个函数式接口(有且仅有一个抽象方法)
案例
public static void main(String[] args) {
Runnable r1 = new Runnable() {
@Override
public void run() {
System.out.println("hello");
}
};
r1.run();
Runnable r2 = ()-> System.out.println("hello,too");
r2.run();
}
案例二
@Test
public void test1(){
Comparator<Integer> c1 = new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
return Integer.compare(o1,o2);
}
};
int result1 = c1.compare(12,21);
System.out.println(result1);
//lambda表达式
Comparator<Integer> c2 = (o1,o2)->Integer.compare(o1,o2);
int result2 = c2.compare(33,21);
System.out.println(result2);
}
Lambda 表达式:在Java 8 语言中引入的一种新的语法元素和操 作符。这个操作符为 “->” , 该操作符被称为 Lambda 操作符 或箭头操作符。它将 Lambda 分为两个部分:
左侧:指定了 Lambda 表达式需要的参数列表
左边:lambda形参列表的参数类型可以省略(类型推断);如果lambda形参列表只有一个参数,其一对()也可以省略
右侧:指定了 Lambda 体,是抽象方法的实现逻辑,也即Lambda 表达式要执行的功能。
右边:lambda体应该使用一对{}包裹;如果lambda体只有一条执行语句(可能是return语句),省略这一对{}和return关键字
案例三:
@Test
public void test3() {
Consumer<String> con = new Consumer<String>() {
@Override
public void accept(String o) {
System.out.println(o);
}
};
//lambda表达式
Consumer<String> con2 = (String o) -> {
System.out.println(o);
};
//数据类型可以省略,由编译器推断得出
Consumer<String> con3 = (o) -> {
System.out.println(o);
};
//参数只有一个时,参数小括号可以省略
Consumer<String> con4 = o -> {
System.out.println(o);
};
//有多个参数,多条语句,且有返回值
Comparator<Integer> c1=(num1,num2)->{
System.out.println(num1);
System.out.println(num2);
return num1.compareTo(num2);
};
//当lambda体只有一条时,return和大括号都可以省略
Comparator<Integer> c2=(num1,num2)-> num1.compareTo(num2);
}
函数式接口
有且仅有一个抽象方法的接口成为函数式接口。@FunctionalInterface
你可以通过 Lambda 表达式来创建该接口的对象。(若 Lambda 表达式 抛出一个受检异常(即:非运行时异常),那么该异常需要在目标接口的抽 象方法上进行声明)。
在java.util.function包下定义了Java 8 的丰富的函数式接口
隔离
限流是一种预防措施,虽然限流可以尽量避免因高并发而引起的服务故障,但服务还会因为其它原因而故障。
而要将这些故障控制在一定范围,避免雪崩,就要靠线程隔离(舱壁模式)和熔断降级手段了。
线程隔离之前讲到过:调用者在调用服务提供者时,给每个调用的请求分配独立线程池,出现故障时,最多消耗这个线程池内资源,避免把调用者的所有资源耗尽。
Feign整合Sentinel
- 修改OrderService的application.yml文件,开启Feign的Sentinel功能
feign:
sentinel:
enabled: true # 开启Feign的Sentinel功能
-
给FeignClient编写失败后的降级逻辑
方式一:FallbackClass,无法对远程调用的异常做处理
方式二:FallbackFactory,可以对远程调用的异常做处理,我们选择这种
public class UserClientFallbackFactory implements FallbackFactory<UserClient> { @Override public UserClient create(Throwable throwable) { return id->{ System.out.println("查询异常"+id); return new User(); }; } } //注册到容器中 @Bean public UserClientFallbackFactory userClientFallbackFactory(){ return new UserClientFallbackFactory(); }
-
在
@FeignClient
中加上fallbackFactory
,不是fallback!!!@FeignClient(value = "userservice",fallbackFactory = UserClientFallbackFactory.class)
完成整合!
Sentinel支持的雪崩解决方案:
-
线程隔离(仓壁模式)
-
降级熔断
Feign整合Sentinel的步骤:
-
在application.yml中配置:feign.sentienl.enable=true
-
给FeignClient编写FallbackFactory并注册为Bean
-
将FallbackFactory配置到FeignClient
线程隔离有两种方式实现:
-
线程池隔离
-
信号量隔离(Sentinel默认采用)
如图:
线程池隔离:给每个服务调用业务分配一个线程池,利用线程池本身实现隔离效果
信号量隔离:不创建线程池,而是计数器模式,记录业务使用的线程数量,达到信号量上限时,禁止新的请求。
两者的优缺点:
熔断降级
熔断降级是解决雪崩问题的重要手段。其思路是由断路器统计服务调用的异常比例、慢请求比例,如果超出阈值则会熔断该服务。即拦截访问该服务的一切请求;而当服务恢复时,断路器会放行访问该服务的请求。
断路器控制熔断和放行是通过状态机来完成的:
状态机包括三个状态:
- closed:关闭状态,断路器放行所有请求,并开始统计异常比例、慢请求比例。超过阈值则切换到open状态
- open:打开状态,服务调用被熔断,访问被熔断服务的请求会被拒绝,快速失败,直接走降级逻辑。Open状态5秒后会进入half-open状态
- half-open:半开状态,放行一次请求,根据执行结果来判断接下来的操作。
- 请求成功:则切换到closed状态
- 请求失败:则切换到open状态
断路器熔断策略有三种:慢调用、异常比例、异常数
断路器熔断策略有三种:慢调用、异常比例、异常数
慢调用
- 慢调用:业务的响应时长(RT)大于指定时长的请求认定为慢调用请求。在指定时间内,如果请求数量超过设定的最小数量,慢调用比例大于设定的阈值,则触发熔断。
例如:
解读:RT超过500ms的调用是慢调用,统计最近10000ms内的请求,如果请求量超过10次,并且慢调用比例不低于0.5,则触发熔断,熔断时长为5秒。然后进入half-open状态,放行一次请求做测试。
案例
需求:给 UserClient的查询用户接口设置降级规则,慢调用的RT阈值为50ms,统计时间为1秒,最小请求数量为5,失败阈值比例为0.4,熔断时长为5
1)设置慢调用
修改user-service中的/user/{id}这个接口的业务。通过休眠模拟一个延迟时间:
此时,orderId=101的订单,关联的是id为1的用户,调用时长为60ms:
orderId=102的订单,关联的是id为2的用户,调用时长为非常短;
2)设置熔断规则
下面,给feign接口设置降级规则:
规则:
超过50ms的请求都会被认为是慢请求
3)测试
在浏览器访问:http://localhost:8088/order/101,快速刷新5次,可以发现:
触发了熔断,请求时长缩短至5ms,快速失败了,并且走降级逻辑,返回的null
在浏览器访问:http://localhost:8088/order/102,竟然也被熔断了:
异常比例
异常比例或异常数:统计指定时间内的调用,如果调用次数超过指定请求数,并且出现异常的比例达到设定的比例阈值(或超过指定异常数),则触发熔断。
例如,一个异常比例设置:
解读:统计最近1000ms内的请求,如果请求量超过10次,并且异常比例不低于0.4,则触发熔断。
一个异常数设置:
解读:统计最近1000ms内的请求,如果请求量超过10次,并且异常比例不低于2次,则触发熔断。
总结
Sentinel熔断降级的策略有哪些?
-
慢调用比例:超过指定时长的调用为慢调用,统计单位时长内慢调用的比例,超过阈值则熔断
-
异常比例:统计单位时长内异常调用的比例,超过阈值则熔断
-
异常数:统计单位时长内异常调用的次数,超过阈值则熔断
授权规则
授权规则可以对调用方的来源做控制,有白名单和黑名单两种方式。
-
白名单:来源(origin)在白名单内的调用者允许访问
-
黑名单:来源(origin)在黑名单内的调用者不允许访问
点击左侧菜单的授权,可以看到授权规则:
-
资源名:就是受保护的资源,例如/order/{orderId}
-
流控应用:是来源者的名单,
- 如果是勾选白名单,则名单中的来源被许可访问。
- 如果是勾选黑名单,则名单中的来源被禁止访问。
比如:
我们允许请求从gateway到order-service,不允许浏览器访问order-service,那么白名单中就要填写网关的来源名称(origin)。
如何获取origin
Sentinel是通过RequestOriginParser这个接口的parseOrigin来获取请求的来源的。
public interface RequestOriginParser {
/**
* 从请求request对象中获取origin,获取方式自定义
*/
String parseOrigin(HttpServletRequest request);
}
这个方法的作用就是从request对象中,获取请求者的origin值并返回。
默认情况下,sentinel不管请求者从哪里来,返回值永远是default,也就是说一切请求的来源都被认为是一样的值default。
因此,我们需要自定义这个接口的实现,让不同的请求,返回不同的origin。
@Component
public class HeaderOriginParser implements RequestOriginParser {
@Override
public String parseOrigin(HttpServletRequest request) {
//获取请求头信息
String origin = request.getHeader("origin");
//origin非空
if (StringUtils.isEmpty(origin)){
origin="balck";
}
return origin;
}
}
使用网关添加请求头信息
- AddRequestHeader=origin,hello # 添加请求头
这样就只有网关过来的请求可以正常调用了
Blocked by Sentinel (flow limiting)
自定义异常结果
默认情况下,发生限流、降级、授权拦截时,都会抛出异常到调用方。异常结果都是flow limmiting(限流)。这样不够友好,无法得知是限流还是降级还是授权拦截。
而如果要自定义异常时的返回结果,需要实现BlockExceptionHandler
接口:
public interface BlockExceptionHandler {
/**
* 处理请求被限流、降级、授权拦截时抛出的异常:BlockException
*/
void handle(HttpServletRequest request, HttpServletResponse response, BlockException e) throws Exception;
}
这个方法有三个参数:
- HttpServletRequest request:request对象
- HttpServletResponse response:response对象
- BlockException e:被sentinel拦截时抛出的异常
这里的BlockException包含多个不同的子类:
异常 | 说明 |
---|---|
FlowException | 限流异常 |
ParamFlowException | 热点参数限流的异常 |
DegradeException | 降级异常 |
AuthorityException | 授权规则异常 |
SystemBlockException | 系统规则异常 |
案例
@Component
public class SentinelExceptionHandler implements BlockExceptionHandler {
@Override
public void handle(HttpServletRequest request, HttpServletResponse response, BlockException e) throws Exception {
String msg = "未知异常";
int status = 429;
if (e instanceof FlowException) {
msg = "请求被限流了";
} else if (e instanceof ParamFlowException) {
msg = "请求被热点参数限流";
} else if (e instanceof DegradeException) {
msg = "请求被降级了";
} else if (e instanceof AuthorityException) {
msg = "没有权限访问";
status = 401;
}
response.setContentType("application/json;charset=utf-8");
response.setStatus(status);
response.getWriter().println("{\"msg\": " + msg + ", \"status\": " + status + "}");
}
}
规则持久化
规则是否能持久化,取决于规则管理模式,sentinel支持三种规则管理模式:
- 原始模式:Sentinel的默认模式,将规则保存在内存,重启服务会丢失。
- pull模式
- push模式
pull模式
pull模式:控制台将配置的规则推送到Sentinel客户端,而客户端会将配置规则保存在本地文件或数据库中。以后会定时去本地文件或数据库中查询,更新本地规则。
push模式
push模式:控制台将配置规则推送到远程配置中心,例如Nacos。Sentinel客户端监听Nacos,获取配置变更的推送消息,完成本地配置更新。
实现push模式
要改源码。。。算了算了。
分步式事务
分布式事务,就是指不是在单个服务或单个数据库架构下,产生的事务,例如:
- 跨数据源的分布式事务
- 跨服务的分布式事务
- 综合情况
在数据库水平拆分、服务垂直拆分之后,一个业务操作通常要跨多个数据库、服务才能完成。例如电商行业中比较常见的下单付款案例,包括下面几个行为:
- 创建新订单
- 扣减商品库存
- 从用户账户余额扣除金额
完成上面的操作需要访问三个不同的微服务和三个不同的数据库。
订单的创建、库存的扣减、账户扣款在每一个服务和数据库内是一个本地事务,可以保证ACID原则。
但是当我们把三件事情看做一个"业务",要满足保证“业务”的原子性,要么所有操作全部成功,要么全部失败,不允许出现部分成功部分失败的现象,这就是分布式系统下的事务了。
此时ACID难以满足,这是分布式事务要解决的问题
CAP定理
1998年,加州大学的计算机科学家 Eric Brewer 提出,分布式系统有三个指标。
- Consistency(一致性)
- Availability(可用性)
- Partition tolerance (分区容错性)
当P(分区出现时),A(一致性)和C(可用性)不能同时存在。
它们的第一个字母分别是 C、A、P。
Eric Brewer 说,这三个指标不可能同时做到。这个结论就叫做 CAP 定理。
BASE理论
BASE理论是对CAP的一种解决思路,包含三个思想:
- Basically Available (基本可用):分布式系统在出现故障时,允许损失部分可用性,即保证核心可用。
- Soft State(软状态):在一定时间内,允许出现中间状态,比如临时的不一致状态。
- Eventually Consistent(最终一致性):虽然无法保证强一致性,但是在软状态结束后,最终达到数据一致。
CAP定理和Base理论为解决分步式事务提供了理论基础。
而分布式事务最大的问题是各个子事务的一致性问题,因此可以借鉴CAP定理和BASE理论:
•AP模式:各子事务分别执行和提交,允许出现结果不一致,然后采用弥补措施恢复数据即可,实现最终一致。
•CP模式:各个子事务执行后互相等待,同时提交,同时回滚,达成强一致。但事务等待过程中,处于弱可用状态。
小结
-
简述BASE理论三个思想:
-
基本可用
-
软状态
-
最终一致
-
-
解决分布式事务的思想和模型:
-
全局事务:整个分布式事务
-
分支事务:分布式事务中包含的每个子系统的事务
-
最终一致思想:各分支事务分别执行并提交,如果有不一致的情况,再想办法恢复数据
-
强一致思想:各分支事务执行完业务不要提交,等待彼此结果。而后统一提交或回滚
-
Seata
Seata是 2019 年 1 月份蚂蚁金服和阿里巴巴共同开源的分布式事务解决方案。致力于提供高性能和简单易用的分布式事务服务,为用户打造一站式的分布式解决方案。
Seata事务管理中有三个重要的角色:
•TC (Transaction Coordinator) - 事务协调者:维护全局和分支事务的状态,协调全局事务提交或回滚。
•TM (Transaction Manager) - 事务管理器:定义全局事务的范围、开始全局事务、提交或回滚全局事务。
•RM (Resource Manager) - 资源管理器:管理分支事务处理的资源,与TC交谈以注册分支事务和报告分支事务的状态,并驱动分支事务提交或回滚。
Seata基于上述架构提供了四种不同的分布式事务解决方案:
- XA模式:强一致性分阶段事务模式,牺牲了一定的可用性,无业务侵入
- TCC模式:最终一致的分阶段事务模式,有业务侵入
- AT模式:最终一致的分阶段事务模式,无业务侵入,也是Seata的默认模式
- SAGA模式:长事务模式,有业务侵入
无论哪种方案,都离不开TC,也就是事务的协调者。
整合Seata
- 引入依赖
<!--seata-->
<dependency>
<groupId>com.alibaba.cloud</groupId>
<artifactId>spring-cloud-starter-alibaba-seata</artifactId>
<exclusions>
<!--版本较低,1.3.0,因此排除-->
<exclusion>
<artifactId>seata-spring-boot-starter</artifactId>
<groupId>io.seata</groupId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>io.seata</groupId>
<artifactId>seata-spring-boot-starter</artifactId>
<!--seata starter 采用1.4.2版本-->
<version>${seata.version}</version>
</dependency>
- 配置配置文件
seata:
registry: # TC服务注册中心的配置,微服务根据这些信息去注册中心获取tc服务地址
type: nacos # 注册中心类型 nacos
nacos:
server-addr: 127.0.0.1:8848 # nacos地址
namespace: "" # namespace,默认为空
group: DEFAULT_GROUP # 分组,默认是DEFAULT_GROUP
application: seata-tc-server # seata服务名称
username: nacos
password: nacos
tx-service-group: seata-demo # 事务组名称
service:
vgroup-mapping: # 事务组与cluster的映射关系
seata-demo: SH
微服务如何根据这些配置寻找TC的地址呢?
我们知道注册到Nacos中的微服务,确定一个具体实例需要四个信息:
- namespace:命名空间
- group:分组
- application:服务名
- cluster:集群名
以上四个信息,在刚才的yaml文件中都能找到:
namespace为空,就是默认的public
结合起来,TC服务的信息就是:public@DEFAULT_GROUP@seata-tc-server@SH,这样就能确定TC服务集群了。然后就可以去Nacos拉取对应的实例信息了。
XA模式
XA 规范 是 X/Open 组织定义的分布式事务处理(DTP,Distributed Transaction Processing)标准,XA 规范 描述了全局的TM与局部的RM之间的接口,几乎所有主流的数据库都对 XA 规范 提供了支持。
正常情况:
异常情况:
一阶段:
- 事务协调者通知每个事物参与者执行本地事务
- 本地事务执行完成后报告事务执行状态给事务协调者,此时事务不提交,继续持有数据库锁
二阶段:
- 事务协调者基于一阶段的报告来判断下一步操作
- 如果一阶段都成功,则通知所有事务参与者,提交事务
- 如果一阶段任意一个参与者失败,则通知所有事务参与者回滚事务
优点和缺点
-
优点
- 事务的强一致性,满足ACID原则。
- 常用数据库都支持,实现简单,并且没有代码侵入
-
缺点
- 因为一阶段需要锁定数据库资源,等待二阶段结束才释放,性能较差
- 依赖关系型数据库实现事务
实现步骤
-
修改配置文件,开启XA模式
data-source-proxy-mode: XA
-
标记入门方法
@GlobalTransactional
@Override @GlobalTransactional public Long create(Order order) { // 创建订单 orderMapper.insert(order); try { // 扣用户余额 accountClient.deduct(order.getUserId(), order.getMoney()); // 扣库存 storageClient.deduct(order.getCommodityCode(), order.getCount()); } catch (FeignException e) { log.error("下单失败,原因:{}", e.contentUTF8(), e); throw new RuntimeException(e.contentUTF8(), e); } return order.getId(); }
-
重启服务。
AT模式
AT模式同样是分阶段提交的事务模型,不过缺弥补了XA模型中资源锁定周期过长的缺陷。
基本流程图:
阶段一RM的工作:
- 注册分支事务
- 记录undo-log(数据快照)
- 执行业务sql并提交
- 报告事务状态
阶段二提交时RM的工作:
- 删除undo-log即可
阶段二回滚时RM的工作:
- 根据undo-log恢复数据到更新前
AT与XA的区别
简述AT模式与XA模式最大的区别是什么?
- XA模式一阶段不提交事务,锁定资源;AT模式一阶段直接提交,不锁定资源。
- XA模式依赖数据库机制实现回滚;AT模式利用数据快照实现数据回滚。
- XA模式强一致;AT模式最终一致
防脏写问题
在多线程并发访问AT模式的分布式事务时,有可能出现脏写问题,如图:
解决思路就是引入了全局锁的概念。在释放DB锁之前,先拿到全局锁。避免同一时刻有另外一个事务来操作当前数据。
在非常极端的情况,由非seata管理的全局事务,修改了被全局锁锁住的字段。
seata会将修改后的快照和回滚后的快照进行对比。
如果不同,则发送警告,由人工介入。
这是一种非常极端的情况,有多种方法可以规避。在业务中,更新数据库中必须使用由seata管理的全局事务等等。
优缺点
AT模式的优点:
- 一阶段完成直接提交事务,释放数据库资源,性能比较好
- 利用全局锁实现读写隔离
- 没有代码侵入,框架自动完成回滚和提交
AT模式的缺点:
- 两阶段之间属于软状态,属于最终一致
- 框架的快照功能会影响性能,但比XA模式要好很多
实现AT模式
AT模式中的快照生成、回滚等动作都是由框架自动完成,没有任何代码侵入,因此实现非常简单。
只不过,AT模式需要一个表来记录全局锁、另一张表来记录数据快照undo_log。
1)导入数据库表,记录全局锁
导入Sql文件:seata-at.sql,其中lock_table导入到TC服务关联的数据库,undo_log表导入到微服务关联的数据库:
2)修改application.yml文件,将事务模式修改为AT模式即可:
seata:
data-source-proxy-mode: AT # 默认就是AT
3)重启服务并测试
标签:事务,调用,服务,请求,模式,熔断,分步,jdk8,异常 来源: https://www.cnblogs.com/Boerk/p/16098215.html