下采样上采样 nn.MaxPool2d() nn.AvgPool2d()池化层
作者:互联网
1.下采样是缩小图像,英文是subsampled或者downsampled;上采样是放大图像,英文是upsampling
2.池化层是当前卷积神经网络中常用组件之一,它最早见于LeNet
一文,称之为Subsample
。自AlexNet
之后采用Pooling命名。池化层是模仿人的视觉系统对数据进行降维,用更高层次的特征表示图像。
实施池化的目的:(1) 降低信息冗余;(2) 提升模型的尺度不变性、旋转不变性;(3) 防止过拟合。
池化层的常见操作包含以下几种:最大值池化,均值池化,随机池化,中值池化,组合池化等。
https://pytorch-cn.readthedocs.io/zh/latest/package_references/torch-nn/
详细的参数直接看文档吧
标签:采样,池化层,nn,AvgPool2d,池化,图像,不变性 来源: https://www.cnblogs.com/h694879357/p/15985324.html