其他分享
首页 > 其他分享> > [Swift]LeetCode684. 冗余连接 | Redundant Connection

[Swift]LeetCode684. 冗余连接 | Redundant Connection

作者:互联网

In this problem, a tree is an undirected graph that is connected and has no cycles.

The given input is a graph that started as a tree with N nodes (with distinct values 1, 2, ..., N), with one additional edge added. The added edge has two different vertices chosen from 1 to N, and was not an edge that already existed.

The resulting graph is given as a 2D-array of edges. Each element of edges is a pair [u, v] with u < v, that represents an undirected edge connecting nodes u and v.

Return an edge that can be removed so that the resulting graph is a tree of N nodes. If there are multiple answers, return the answer that occurs last in the given 2D-array. The answer edge [u, v] should be in the same format, with u < v.

Example 1:

Input: [[1,2], [1,3], [2,3]]
Output: [2,3]
Explanation: The given undirected graph will be like this:
  1
 / \
2 - 3 

Example 2:

Input: [[1,2], [2,3], [3,4], [1,4], [1,5]]
Output: [1,4]
Explanation: The given undirected graph will be like this:
5 - 1 - 2
    |   |
    4 - 3 

Note:

Update (2017-09-26):
We have overhauled the problem description + test cases and specified clearly the graph is an undirectedgraph. For the directed graph follow up please see Redundant Connection II). We apologize for any inconvenience caused.


在本问题中, 树指的是一个连通且无环的无向图。

输入一个图,该图由一个有着N个节点 (节点值不重复1, 2, ..., N) 的树及一条附加的边构成。附加的边的两个顶点包含在1到N中间,这条附加的边不属于树中已存在的边。

结果图是一个以组成的二维数组。每一个的元素是一对[u, v] ,满足 u < v,表示连接顶点u 和v的无向图的边。

返回一条可以删去的边,使得结果图是一个有着N个节点的树。如果有多个答案,则返回二维数组中最后出现的边。答案边 [u, v] 应满足相同的格式 u < v

示例 1:

输入: [[1,2], [1,3], [2,3]]
输出: [2,3]
解释: 给定的无向图为:
  1
 / \
2 - 3

示例 2:

输入: [[1,2], [2,3], [3,4], [1,4], [1,5]]
输出: [1,4]
解释: 给定的无向图为:
5 - 1 - 2
    |   |
    4 - 3

注意:

更新(2017-09-26):
我们已经重新检查了问题描述及测试用例,明确图是无向 图。对于有向图详见冗余连接II。对于造成任何不便,我们深感歉意。


Runtime: 28 ms Memory Usage: 18.9 MB
 1 class Solution {
 2     func findRedundantConnection(_ edges: [[Int]]) -> [Int] {
 3         var root:[Int] = [Int](repeating:-1,count:2001)
 4         for edge in edges
 5         {
 6             var x:Int = find(&root, edge[0])
 7             var y:Int = find(&root, edge[1])
 8             if x == y {return edge}
 9             root[x] = y
10         }
11         return [Int]()
12     }
13     
14     func find (_ root:inout [Int],_ i:Int) -> Int
15     {
16         var i = i
17         while (root[i] != -1)
18         {
19             i = root[i]
20         }
21         return i
22     }
23 }

32ms

 1 class Solution {
 2     func findRedundantConnection(_ edges: [[Int]]) -> [Int] {
 3         guard edges.isEmpty == false else {
 4             return []
 5         }
 6         let n = edges.count
 7         var parents: [Int] = []
 8         for i in 0...n {
 9             parents.append(i)
10         }
11         for edge in edges {
12             let first = edge[0]
13             let second = edge[1]
14             let p1 = find(parents, first)
15             let p2 = find(parents, second)
16             if p1 == p2 {
17                 return edge
18             }
19             parents[p2] = p1
20         }
21         return []
22     }
23     
24     private func find(_ parents: [Int], _ val: Int) -> Int {
25         if parents[val] == val {
26             return val
27         }
28         return find(parents, parents[val])
29     }
30 }

48ms

 1 class Solution {
 2     // s1: union find
 3     func findRedundantConnection(_ edges: [[Int]]) -> [Int] {
 4         var uf = UnionFind(n: edges.count+1)
 5         for con in edges {
 6             let s = con[0]
 7             let e = con[1]
 8             if uf.union(s, e) == false {
 9                 return con
10             } 
11         }
12         return []
13     }
14 }
15 
16 class UnionFind {
17     public var parents = [Int]()
18     private var ranks = [Int]()
19     public var count: Int = 0
20     init(n: Int) {
21         for i in 0..<n {
22             parents.append(i)
23             ranks.append(1)
24         }
25     }
26     
27     func find(_ x: Int) -> Int {
28         var x = x
29         if parents[x] != x {
30             parents[x] = find(parents[x])
31         }
32         return parents[x]
33     }
34     /*
35     1 2 3
36     5 6
37     */
38     func union(_ x: Int, _ y: Int) -> Bool {
39         let px = find(x)
40         let py = find(y)
41         if px == py {
42             return false
43         }
44         count -= 1
45         if ranks[x] > ranks[y] {
46             parents[py] = px
47         } else if ranks[x] < ranks[y] {
48             parents[px] = py
49         } else {
50             parents[py] = px
51             ranks[px] += 1
52         }
53         return true
54     }
55 }

52ms

 1 class Solution {
 2     func findRedundantConnection(_ edges: [[Int]]) -> [Int] {
 3         guard edges.count > 0 else { return [0,0] }
 4 
 5         var totalNode = edges.count + 1
 6         
 7         var group: [Int] = []
 8         var groupLevel: [Int] = []
 9         
10         for i in 0..<totalNode {
11             group.append(i)
12             groupLevel.append(0)
13         }
14         
15         var extraEdge:[Int] = []
16         
17         for edge in edges {
18            var nodeX = edge[0]
19            var nodeY = edge[1]
20             
21            var pNodeX =  findParent(nodeX, &group)
22            var pNodeY =  findParent(nodeY, &group)
23            if pNodeX != pNodeY {
24                 if groupLevel[pNodeX] > groupLevel[pNodeY] {
25                     group[pNodeY] = pNodeX
26                 }else if groupLevel[pNodeX] < groupLevel[pNodeY] {
27                     group[pNodeX] = pNodeY
28                 }else {
29                     group[pNodeY] = pNodeX
30                     groupLevel[pNodeX] += 1
31                 }
32            }else {
33                extraEdge = edge
34            }
35         }
36         return extraEdge
37     }
38         
39     
40     func findParent(_ node: Int, _ group: inout [Int]) -> Int {
41         var currentNode = node
42         while currentNode != group[currentNode] {
43             group[currentNode] = group[group[currentNode]]
44             currentNode = group[currentNode]
45         }
46         
47         return currentNode
48     }
49 }

64ms

  1 class Solution {
  2     
  3     struct Edge {
  4         var w: Int
  5         var a: Int
  6         var b: Int
  7     }
  8     
  9     func findRedundantConnection(_ _edges: [[Int]]) -> [Int] {
 10         var wEdges = [Int: [(Int, Int)]]()
 11         for (i, edge) in _edges.enumerated() {
 12             wEdges[edge[0], default: []].append((edge[1], i))
 13             wEdges[edge[1], default: []].append((edge[0], i))
 14         }
 15         var safe: Set<Int> = []
 16         var heap = Heap<((Int, Int), Int)>(sort: {
 17             $0.1 < $1.1
 18         })
 19         let source = _edges[0][0]
 20         var edges = Set<[Int]>()
 21         safe.insert(source)
 22         for n in wEdges[source]! {
 23             heap.insert( ((source, n.0), n.1) )
 24         }
 25         while !heap.isEmpty {
 26             let ((source, node), _) = heap.remove()!
 27             safe.insert(node)
 28             edges.insert([source, node])
 29             edges.insert([node, source])
 30             for n in wEdges[node]! {
 31                 if edges.contains( [n.0, node] ) {
 32                     
 33                 } else if safe.contains(n.0) {
 34                     return [node, n.0].sorted()
 35                 } else {
 36                     heap.insert( ((node, n.0), n.1) )
 37                 }
 38             }
 39         }
 40         
 41         return _edges.last!
 42     }
 43 }
 44 
 45 
 46 
 47 
 48 
 49 public struct Heap<T> {
 50   
 51   /** The array that stores the heap's nodes. */
 52   var nodes = [T]()
 53   
 54   /**
 55    * Determines how to compare two nodes in the heap.
 56    * Use '>' for a max-heap or '<' for a min-heap,
 57    * or provide a comparing method if the heap is made
 58    * of custom elements, for example tuples.
 59    */
 60   private var orderCriteria: (T, T) -> Bool
 61   
 62   /**
 63    * Creates an empty heap.
 64    * The sort function determines whether this is a min-heap or max-heap.
 65    * For comparable data types, > makes a max-heap, < makes a min-heap.
 66    */
 67   public init(sort: @escaping (T, T) -> Bool) {
 68     self.orderCriteria = sort
 69   }
 70   
 71   /**
 72    * Creates a heap from an array. The order of the array does not matter;
 73    * the elements are inserted into the heap in the order determined by the
 74    * sort function. For comparable data types, '>' makes a max-heap,
 75    * '<' makes a min-heap.
 76    */
 77   public init(array: [T], sort: @escaping (T, T) -> Bool) {
 78     self.orderCriteria = sort
 79     configureHeap(from: array)
 80   }
 81   
 82   /**
 83    * Configures the max-heap or min-heap from an array, in a bottom-up manner.
 84    * Performance: This runs pretty much in O(n).
 85    */
 86   private mutating func configureHeap(from array: [T]) {
 87     nodes = array
 88     for i in stride(from: (nodes.count/2-1), through: 0, by: -1) {
 89       shiftDown(i)
 90     }
 91   }
 92   
 93   public var isEmpty: Bool {
 94     return nodes.isEmpty
 95   }
 96   
 97   public var count: Int {
 98     return nodes.count
 99   }
100   
101   /**
102    * Returns the index of the parent of the element at index i.
103    * The element at index 0 is the root of the tree and has no parent.
104    */
105   @inline(__always) internal func parentIndex(ofIndex i: Int) -> Int {
106     return (i - 1) / 2
107   }
108   
109   /**
110    * Returns the index of the left child of the element at index i.
111    * Note that this index can be greater than the heap size, in which case
112    * there is no left child.
113    */
114   @inline(__always) internal func leftChildIndex(ofIndex i: Int) -> Int {
115     return 2*i + 1
116   }
117   
118   /**
119    * Returns the index of the right child of the element at index i.
120    * Note that this index can be greater than the heap size, in which case
121    * there is no right child.
122    */
123   @inline(__always) internal func rightChildIndex(ofIndex i: Int) -> Int {
124     return 2*i + 2
125   }
126   
127   /**
128    * Returns the maximum value in the heap (for a max-heap) or the minimum
129    * value (for a min-heap).
130    */
131   public func peek() -> T? {
132     return nodes.first
133   }
134   
135   /**
136    * Adds a new value to the heap. This reorders the heap so that the max-heap
137    * or min-heap property still holds. Performance: O(log n).
138    */
139   public mutating func insert(_ value: T) {
140     nodes.append(value)
141     shiftUp(nodes.count - 1)
142   }
143   
144   /**
145    * Adds a sequence of values to the heap. This reorders the heap so that
146    * the max-heap or min-heap property still holds. Performance: O(log n).
147    */
148   public mutating func insert<S: Sequence>(_ sequence: S) where S.Iterator.Element == T {
149     for value in sequence {
150       insert(value)
151     }
152   }
153   
154   /**
155    * Allows you to change an element. This reorders the heap so that
156    * the max-heap or min-heap property still holds.
157    */
158   public mutating func replace(index i: Int, value: T) {
159     guard i < nodes.count else { return }
160     
161     remove(at: i)
162     insert(value)
163   }
164   
165   /**
166    * Removes the root node from the heap. For a max-heap, this is the maximum
167    * value; for a min-heap it is the minimum value. Performance: O(log n).
168    */
169   @discardableResult public mutating func remove() -> T? {
170     guard !nodes.isEmpty else { return nil }
171     
172     if nodes.count == 1 {
173       return nodes.removeLast()
174     } else {
175       // Use the last node to replace the first one, then fix the heap by
176       // shifting this new first node into its proper position.
177       let value = nodes[0]
178       nodes[0] = nodes.removeLast()
179       shiftDown(0)
180       return value
181     }
182   }
183   
184   /**
185    * Removes an arbitrary node from the heap. Performance: O(log n).
186    * Note that you need to know the node's index.
187    */
188   @discardableResult public mutating func remove(at index: Int) -> T? {
189     guard index < nodes.count else { return nil }
190     
191     let size = nodes.count - 1
192     if index != size {
193       nodes.swapAt(index, size)
194       shiftDown(from: index, until: size)
195       shiftUp(index)
196     }
197     return nodes.removeLast()
198   }
199   
200   /**
201    * Takes a child node and looks at its parents; if a parent is not larger
202    * (max-heap) or not smaller (min-heap) than the child, we exchange them.
203    */
204   internal mutating func shiftUp(_ index: Int) {
205     var childIndex = index
206     let child = nodes[childIndex]
207     var parentIndex = self.parentIndex(ofIndex: childIndex)
208     
209     while childIndex > 0 && orderCriteria(child, nodes[parentIndex]) {
210       nodes[childIndex] = nodes[parentIndex]
211       childIndex = parentIndex
212       parentIndex = self.parentIndex(ofIndex: childIndex)
213     }
214     
215     nodes[childIndex] = child
216   }
217   
218   /**
219    * Looks at a parent node and makes sure it is still larger (max-heap) or
220    * smaller (min-heap) than its childeren.
221    */
222   internal mutating func shiftDown(from index: Int, until endIndex: Int) {
223     let leftChildIndex = self.leftChildIndex(ofIndex: index)
224     let rightChildIndex = leftChildIndex + 1
225     
226     // Figure out which comes first if we order them by the sort function:
227     // the parent, the left child, or the right child. If the parent comes
228     // first, we're done. If not, that element is out-of-place and we make
229     // it "float down" the tree until the heap property is restored.
230     var first = index
231     if leftChildIndex < endIndex && orderCriteria(nodes[leftChildIndex], nodes[first]) {
232       first = leftChildIndex
233     }
234     if rightChildIndex < endIndex && orderCriteria(nodes[rightChildIndex], nodes[first]) {
235       first = rightChildIndex
236     }
237     if first == index { return }
238     
239     nodes.swapAt(index, first)
240     shiftDown(from: first, until: endIndex)
241   }
242   
243   internal mutating func shiftDown(_ index: Int) {
244     shiftDown(from: index, until: nodes.count)
245   }
246   
247 }
248 
249 // MARK: - Searching
250 extension Heap where T: Equatable {
251   
252   /** Get the index of a node in the heap. Performance: O(n). */
253   public func index(of node: T) -> Int? {
254     return nodes.index(where: { $0 == node })
255   }
256   
257   /** Removes the first occurrence of a node from the heap. Performance: O(n log n). */
258   @discardableResult public mutating func remove(node: T) -> T? {
259     if let index = index(of: node) {
260       return remove(at: index)
261     }
262     return nil
263   }  
264 }

88ms

 1 class Solution {
 2 
 3     func findRedundantConnection(_ edges: [[Int]]) -> [Int] {
 4         var N = 0
 5         var graph = [Int: Set<Int>]()
 6         for edge in edges {
 7             graph[edge[0], default: []].insert(edge[1])
 8             graph[edge[1], default: []].insert(edge[0])
 9             N = max(N, edge[0], edge[1])
10         }
11         let source = edges[0][0]
12         for edge in edges.reversed() {
13             if isConnected(graph, edge, source, N) {
14                 return edge
15             }
16         }
17         return edges.last!
18     }
19     
20     func isConnected(_ graph: [Int: Set<Int>], _ edge: [Int], _ source: Int, _ N: Int) -> Bool {
21         var graph = graph
22         graph[edge[0]]!.remove(edge[1])
23         graph[edge[1]]!.remove(edge[0])
24         var stack = [Int]()
25         var visited = Set<Int>()
26         stack.append(source)
27         while !stack.isEmpty {
28             let node = stack.popLast()!
29             visited.insert(node)
30             for edge in graph[node] ?? [] {
31                 if !visited.contains(edge) {
32                     stack.append(edge)
33                 }
34             }
35         }
36         
37         return visited.count == N
38     }
39 }

112ms

 1 class Solution {
 2     
 3     let MAX_EDGE_VAL = 1000
 4     
 5     func findRedundantConnection(_ edges: [[Int]]) -> [Int] {
 6         var graph = [Int: [Int]]()
 7         
 8         for edge in edges {
 9             let u = edge[0]
10             let v = edge[1]
11             var visited = Set<Int>()
12             if hasPath(&graph, &visited, u, v) {
13                 return [u, v]
14             }
15             graph[u] = graph[u] ?? [Int]()
16             graph[u]!.append(v)
17             graph[v] = graph[v] ?? [Int]()
18             graph[v]!.append(u)
19         }
20         return [-1, -1]
21     }
22     
23     public func hasPath(_ graph: inout [Int: [Int]], _ visited: inout Set<Int>, _ source: Int, _ target: Int) -> Bool {
24         if source == target {
25             return true
26         }
27         if !graph.keys.contains(source) || !graph.keys.contains(target) {
28             return false
29         }
30         visited.insert(source)
31         if let neighbers = graph[source] {
32             for neighber in neighbers {
33                 if visited.contains(neighber) {
34                     continue
35                 }
36                 if hasPath(&graph, &visited, neighber, target) {
37                     return true
38                 }
39             }   
40         }
41         return false
42     }
43 }

 

标签:return,LeetCode684,Int,Redundant,Connection,edge,heap,var,nodes
来源: https://www.cnblogs.com/strengthen/p/10500242.html