553. 最优除法
作者:互联网
给定一组正整数,相邻的整数之间将会进行浮点除法操作。例如, [2,3,4] -> 2 / 3 / 4 。
但是,你可以在任意位置添加任意数目的括号,来改变算数的优先级。你需要找出怎么添加括号,才能得到最大的结果,并且返回相应的字符串格式的表达式。你的表达式不应该含有冗余的括号。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/optimal-division
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
递归
class Solution {
private Info solve(int[] nums, int left, int right) {
if (left == right) {
return new Info(nums[left], String.valueOf(nums[left]), nums[right], String.valueOf(nums[right]));
}
if (left + 1 == right) {
return new Info((double) nums[left] / nums[right], nums[left] + "/" + nums[right], (double) nums[left] / nums[right], nums[left] + "/" + nums[right]);
}
Info ans = new Info(Double.MAX_VALUE, null, Double.MIN_VALUE, null);
for (int i = left; i < right; ++i) {
Info info1 = solve(nums, left, i);
Info info2 = solve(nums, i + 1, right);
if (info1.minValue / info2.maxValue < ans.minValue) {
ans.minValue = info1.minValue / info2.maxValue;
ans.minOp = info1.minOp + "/" + (right - i == 1 ? info2.maxOp : ("(" + info2.maxOp + ")"));
}
if (info1.maxValue / info2.minValue > ans.maxValue) {
ans.maxValue = info1.maxValue / info2.minValue;
ans.maxOp = info1.maxOp + "/" + (right - i == 1 ? info2.minOp : ("(" + info2.minOp + ")"));
}
}
return ans;
}
public String optimalDivision(int[] nums) {
if (nums == null || nums.length == 0) {
return "";
}
return solve(nums, 0, nums.length - 1).maxOp;
}
}
class Info {
double minValue;
String minOp;
double maxValue;
String maxOp;
public Info(double minValue, String minOp, double maxValue, String maxOp) {
this.minValue = minValue;
this.minOp = minOp;
this.maxValue = maxValue;
this.maxOp = maxOp;
}
}
记忆化搜素
class Solution {
private Info[][] dp;
private Info solve(int[] nums, int left, int right) {
if (dp[left][right] == null) {
if (left == right) {
dp[left][right] = new Info(nums[left], String.valueOf(nums[left]), nums[right], String.valueOf(nums[right]));
} else if (left + 1 == right) {
dp[left][right] = new Info((double) nums[left] / nums[right], nums[left] + "/" + nums[right], (double) nums[left] / nums[right], nums[left] + "/" + nums[right]);
} else {
Info ans = new Info(Double.MAX_VALUE, null, Double.MIN_VALUE, null);
for (int i = left; i < right; ++i) {
Info info1 = solve(nums, left, i);
Info info2 = solve(nums, i + 1, right);
if (info1.minValue / info2.maxValue < ans.minValue) {
ans.minValue = info1.minValue / info2.maxValue;
ans.minOp = info1.minOp + "/" + (right - i == 1 ? info2.maxOp : ("(" + info2.maxOp + ")"));
}
if (info1.maxValue / info2.minValue > ans.maxValue) {
ans.maxValue = info1.maxValue / info2.minValue;
ans.maxOp = info1.maxOp + "/" + (right - i == 1 ? info2.minOp : ("(" + info2.minOp + ")"));
}
}
dp[left][right] = ans;
}
}
return dp[left][right];
}
public String optimalDivision(int[] nums) {
if (nums == null || nums.length == 0) {
return "";
}
this.dp = new Info[nums.length][nums.length];
return solve(nums, 0, nums.length - 1).maxOp;
}
}
class Info {
double minValue;
String minOp;
double maxValue;
String maxOp;
public Info(double minValue, String minOp, double maxValue, String maxOp) {
this.minValue = minValue;
this.minOp = minOp;
this.maxValue = maxValue;
this.maxOp = maxOp;
}
}
动态规划
数学
class Solution {
public String optimalDivision(int[] nums) {
int n = nums.length;
if (n == 1) {
return String.valueOf(nums[0]);
}
if (n == 2) {
return nums[0] + "/" + nums[1];
}
StringBuffer res = new StringBuffer();
res.append(nums[0]).append("/(").append(nums[1]);
for (int i = 2; i < n; i++) {
res.append("/");
res.append(nums[i]);
}
res.append(")");
return res.toString();
}
}
标签:Info,right,nums,maxValue,553,minValue,最优,除法,left 来源: https://www.cnblogs.com/tianyiya/p/15951578.html