其他分享
首页 > 其他分享> > 半正交矩阵(定义)

半正交矩阵(定义)

作者:互联网

半正交矩阵wiki

如 M = [ 1 0 ] , 满 足 M t M = I m , m ( A T A = I  or  A A T = I .   ) [ 1 0 ] ∗ [ 1 0 ] = 1 = I m , m o r t h o g o n a l   m a t r i x [ a b c d e f g h i ] = [   A 2 ∗ 3 正 交 阵 的 一 半 g h i ] ⇒ A ∗ A T = I 2 ∗ 2 如M=\begin{bmatrix}1\\0\end{bmatrix},满足M^tM=I_{m,m}(A^T A = I \text{ or } A A^T = I. \,)\\ \begin{bmatrix}1&0\end{bmatrix}*\begin{bmatrix}1\\0\end{bmatrix}=1=I_{m,m}\\ orthogonal \ matrix\begin{bmatrix}a&b&c\\d&e&f\\g&h&i\end{bmatrix} = \begin{bmatrix} \ & {A_{2*3}}_{正交阵的一半}\\g&h&i\end{bmatrix} \Rightarrow \\ A*A^T=I_{2*2} 如M=[10​],满足MtM=Im,m​(ATA=I or AAT=I.)[1​0​]∗[10​]=1=Im,m​orthogonal matrix⎣⎡​adg​beh​cfi​⎦⎤​=[ g​A2∗3​正交阵的一半​h​i​]⇒A∗AT=I2∗2​

1.半正交矩阵是满秩的
2. ∥ M x ∥ 2 = ∥ x ∥ 2 \|Mx\|_2 = \|x\|_2 ∥Mx∥2​=∥x∥2​

In this paper we have discussed different possible orthogonalities in matrices, namely orthogonal, quasiorthogonal, semi-orthogonal and non-orthogonal matrices including completely positive matrices, while giving some of their constructions besides studying some of their properties.


pdf:Maths for Signals and Systems Linear Algebra in Engineering

标签:begin,end,定义,orthogonal,矩阵,正交,bmatrix,matrices
来源: https://blog.csdn.net/ResumeProject/article/details/123065049