CKKS Part4: CKKS的乘法和重线性化
作者:互联网
本文翻译于CKKS EXPLAINED, PART 4: MULTIPLICATION AND RELINEARIZATION,主要介绍CKKS方案中的密文乘法和重线性化技术
介绍
在上一篇 CKKS Part3: CKKS的加密和解密 ,我们看到了如何基于RLWE问题创建同态加密方案,实现同态加法和密文明文乘法。
虽然执行密文-明文乘法很容易,但正如我们将看到的,密文-密文要复杂得多。事实上,我们需要处理很多事情才能正确地完成它,比如找到正确的操作,这样一旦解密,我们就可以得到两个密文的乘积,以及管理密文的大小。
因此,本文将介绍密文乘法和重新线性化的概念,以减少生成的密文的大小。
基本概念
为了了解我们将如何在CKKS中执行密文-密文乘法,让我们回顾一下我们在前一篇文章中看到的内容。
首先,记住我们研究的是多项式空间\(R_{q}=\Zeta _{q}\left[ X \right]/\left( X^{N}+1 \right)\)。我们将s作为我们的私钥,然后我们可以安全地输出一个公钥p=(b,a)=(−a. s+e,a),其中a均匀取样\(R_{q}\)、 e是一个小的随机多项式。
然后我们有\(\mbox{E}ncrypt\left( u,s \right)=c=\left( c_{0},c_{1} \right)=\left( u,0 \right)+p=\left( b+u,a \right)\in R_{q}^{2}\)是明文\(u \in \Zeta _{q}\left[ X \right]/\left( X^{N}+1 \right)\)使用公钥p的加密操作。要使用私钥s解密密文c,我们执行以下操作:$$Decrypt\left( c,s \right)=c_{0}+c_{1}.s=u+e$$
然后我们发现定义一个在密文上的加法运算\(
标签:right,多项式,Decrypt,CKKS,Part4,密文,线性化,我们,left 来源: https://www.cnblogs.com/pam-sh/p/15865445.html