图论基础知识
作者:互联网
graph:
邻接矩阵(adjacency):
adjacency=[ [0,1,1,0,0,0],
[1,0,1,1,0,0],
[1,1,0,1,1,0],
[0,1,1,0,1,1],
[0,0,1,1,0,0],
[0,0,0,1,0,0]
]
度 (degree):
无向图的度: A:2;B:3
有向图:分为入度和出度
连通图和非连通图
最短路径
度中心性
度中心性=该点的degree / n-1
特征向量中心性(eigenvector)
中介中心性(betweens)
连接中心性
HITS
区别好箭头指向即可
#使用pandas初始化图包括起始点,末尾点,关系权重
import networkx as nx
import pandas as pd
import numpy as np
edges=pd.DataFrame()
edges['sources']=[1,1,1,2,2,3,3,4,4,5,5,5]
edges['targets']=[2,4,5,3,1,2,5,1,5,1,3,4]
edges['weights']=[1,1,1,1,1,1,1,1,1,1,1,1]
print(edges)
sources targets weights
0 1 2 1
1 1 4 1
2 1 5 1
3 2 3 1
4 2 1 1
5 3 2 1
6 3 5 1
7 4 1 1
8 4 5 1
9 5 1 1
10 5 3 1
11 5 4 1
使用networkx包生成图
G=nx.from_pandas_edgelist(edges,source='sources',target='targets',edge_attr='weights')
print(G)
得到:
Graph with 5 nodes and 6 edges
#degree
print(nx.degree(G))
#图直径
print(nx.diameter(G))
#连通分量
print(list(nx.connected_components(G)))
#度中心性
print(nx.degree_centrality((G)))
#特征向量中心性
print(nx.eigenvector_centrality(G))
#betweeness
print(nx.betweenness_centrality(G))
#pagerank
print(nx.pagerank(G))
#HITS
print(nx.hits(G))
[(1, 3), (2, 2), (4, 2), (5, 3), (3, 2)]
2
[{1, 2, 3, 4, 5}]
{1: 0.75, 2: 0.5, 4: 0.5, 5: 0.75, 3: 0.5}
{1: 0.5298988890761731, 2: 0.35775191431708964, 4: 0.4271316779596084, 5: 0.5298988890761731, 3: 0.35775191431708964}
{1: 0.25, 2: 0.08333333333333333, 4: 0.0, 5: 0.25, 3: 0.08333333333333333}
标签:图论,degree,0.5,基础知识,nx,sources,edges,print 来源: https://blog.csdn.net/m0_52295416/article/details/122779535