1688. 比赛中的配对次数
作者:互联网
难度简单58
给你一个整数 n
,表示比赛中的队伍数。比赛遵循一种独特的赛制:
- 如果当前队伍数是 偶数 ,那么每支队伍都会与另一支队伍配对。总共进行
n / 2
场比赛,且产生n / 2
支队伍进入下一轮。 - 如果当前队伍数为 奇数 ,那么将会随机轮空并晋级一支队伍,其余的队伍配对。总共进行
(n - 1) / 2
场比赛,且产生(n - 1) / 2 + 1
支队伍进入下一轮。
返回在比赛中进行的配对次数,直到决出获胜队伍为止。
示例 1:
输入:n = 7 输出:6 解释:比赛详情: - 第 1 轮:队伍数 = 7 ,配对次数 = 3 ,4 支队伍晋级。 - 第 2 轮:队伍数 = 4 ,配对次数 = 2 ,2 支队伍晋级。 - 第 3 轮:队伍数 = 2 ,配对次数 = 1 ,决出 1 支获胜队伍。 总配对次数 = 3 + 2 + 1 = 6
示例 2:
输入:n = 14 输出:13 解释:比赛详情: - 第 1 轮:队伍数 = 14 ,配对次数 = 7 ,7 支队伍晋级。 - 第 2 轮:队伍数 = 7 ,配对次数 = 3 ,4 支队伍晋级。 - 第 3 轮:队伍数 = 4 ,配对次数 = 2 ,2 支队伍晋级。 - 第 4 轮:队伍数 = 2 ,配对次数 = 1 ,决出 1 支获胜队伍。 总配对次数 = 7 + 3 + 2 + 1 = 13
提示:
1 <= n <= 200
思路一:模拟,假设每次余留下的参数队伍数量为n,那么直到n变为1之前,都要持续比赛,每一轮增加的比赛次数为[n/2],每轮比赛后,n更新为(n >> 1) + (n& 1)。
class Solution {
public:
int numberOfMatches(int n) {
int ans = 0;
while(n > 1){
ans += (n >> 1);
n = (n >> 1) + (n & 1);
}
return ans;
}
};
思路二:每次两支队伍比赛都会淘汰一支队伍,最终只剩下一支队伍,就淘汰了n-1,可以反推出比赛了n-1次。
class Solution {
public:
int numberOfMatches(int n) {
return n - 1;
}
};
标签:晋级,比赛,int,次数,队伍,1688,配对 来源: https://blog.csdn.net/qq_39304630/article/details/122682786