其他分享
首页 > 其他分享> > 一刷106-动态规划-62不同路径(m)

一刷106-动态规划-62不同路径(m)

作者:互联网

题目:
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?

在这里插入图片描述

示例:
输入:m = 3, n = 7
输出:28
示例 2:

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下
示例 3:

输入:m = 7, n = 3
输出:28
示例 4:

输入:m = 3, n = 3
输出:6
--------------------
思考:
深搜:
这道题目,刚一看最直观的想法就是用图论里的深搜,来枚举出来有多少种路径。
注意题目中说机器人每次只能向下或者向右移动一步,
那么其实机器人走过的路径可以抽象为一棵二叉树,而叶子节点就是终点!
如图举例:

在这里插入图片描述

此时问题就可以转化为求二叉树叶子节点的个数,代码如下:

class Solution {
private:
    int dfs(int i, int j, int m, int n) {
        if (i > m || j > n) return 0; // 越界了
        if (i == m && j == n) return 1; // 找到一种方法,相当于找到了叶子节点
        return dfs(i + 1, j, m, n) + dfs(i, j + 1, m, n);
    }
public:
    int uniquePaths(int m, int n) {
        return dfs(1, 1, m, n);
    }
};
大家如果提交了代码就会发现超时了!
来分析一下时间复杂度,这个深搜的算法,其实就是要遍历整个二叉树。
这棵树的深度其实就是m+n-1(深度按从1开始计算)。
那二叉树的节点个数就是 2^(m + n - 1) - 1。可以理解深搜的算法就是遍历了整个满二叉树
(其实没有遍历整个满二叉树,只是近似而已)

所以上面深搜代码的时间复杂度为$O(2^{m + n - 1} - 1)$,
可以看出,这是指数级别的时间复杂度,是非常大的

动态规划:
机器人从(0 , 0) 位置出发,到(m - 1, n - 1)终点。

按照动规五部曲来分析:
确定dp数组(dp table)以及下标的含义
dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。

确定递推公式
想要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。
此时在回顾一下 dp[i - 1][j] 表示啥,是从(0, 0)的位置到(i - 1, j)有几条路径,dp[i][j - 1]同理
那么很自然,dp[i][j] = dp[i - 1][j] + dp[i][j - 1],因为dp[i][j]只有这两个方向过来。

dp数组的初始化
如何初始化呢,首先dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,
那么dp[0][j]也同理

所以初始化代码为:
for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1;
确定遍历顺序
这里要看一下递归公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1],
dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。
这样就可以保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值的。

举例推导dp数组
如图所示:

在这里插入图片描述

代码:
 /**
     * 1. 确定dp数组下标含义 dp[i][j] 到每一个坐标可能的路径种类
     * 2. 递推公式 dp[i][j] = dp[i-1][j] dp[i][j-1]
     * 3. 初始化 dp[i][0]=1 dp[0][i]=1 初始化横竖就可
     * 4. 遍历顺序 一行一行遍历
     * 5. 推导结果 。。。。。。。。
     *
     * @param m
     * @param n
     * @return
     */
class Solution {
	public int uniquePaths(int m, int n) {
		int[][] dp = new int[m][n];
		for (int i = 0; i < m; i++) {
			dp[i][0] = 1;
		}
		for (int i = 0; i < n; i++) {
			dp[0][i] = 1;
		}
		for (int i = 1; i < m; i++) {
			for (int j = 1; j < n; j++) {
				dp[i][j] = dp[i-1][j] + dp[i][j-1];
			}
		}
		return dp[m-1][n-1];
	}
}

LC

标签:遍历,return,int,++,62,一刷,106,dp,二叉树
来源: https://blog.csdn.net/m0_45170946/article/details/122723039