迷宫寻路的实现 | 输出 m x n 矩形从左上角走到右下角的行走方案总数
作者:互联网
#include <iostream>
#include <vector>
#include <algorithm>
#define W PointType::Wall
#define NULL_POINT Point{-1, -1, -1}
struct Point {
int x;
int y;
int value;
bool operator==(const Point &other) const {
return this->x == other.x && this->y == other.y && this->value == other.value;
}
bool operator!=(const Point &other) const {
return this->x != other.x || this->y != other.y || this->value != other.value;
}
};
enum PointType {
Road,
Fork,
Enter,
Exit,
Corner,
Wall,
};
class Solution {
private:
int width, height;
int map[4][4] = {0};
// 踪迹
std::vector<Point> trace;
Point previous_point = NULL_POINT;
Point front_point = NULL_POINT;
Point get_point(PointType type) {
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
if (PointType(map[i][j]) == type) {
return Point{i, j, type};
}
}
}
return NULL_POINT;
}
Point get_point(int x, int y) {
if (x < 0 || x >= width || y < 0 || y >= height) {
return NULL_POINT;
} else {
return Point{x, y, PointType(map[y][x])};
}
}
bool can_go_back() {
return trace.size() > 1;
}
bool go_back() {
if (trace.size() <= 1) {
previous_point = NULL_POINT;
return false;
} else {
front_point = trace.back();
trace.erase(remove(trace.begin(), trace.end(), trace.back()), trace.end());
if (trace.size() - 1 - 1 >= 0) {
previous_point = trace[trace.size() - 1 - 1];
}
else {
previous_point = NULL_POINT;
}
return true;
}
}
bool go_towards() {
std::vector<Point> next_points = get_next_points();
if (next_points.size() == 0) {
return false;
}
previous_point = trace.back();
trace.push_back(next_points.front());
front_point = NULL_POINT;
return true;
}
void go_towards(Point point) {
if (trace.size() > 0) {
previous_point = trace.back();
}
trace.push_back(point);
front_point = NULL_POINT;
}
Point get_previous_point() {
if (trace.size() - 1 - 1 < 0) {
return NULL_POINT;
}
return trace[trace.size() - 1 - 1];
}
Point get_current_point() {
if (trace.size() == 0) {
return NULL_POINT;
}
else {
return trace.back();
}
}
bool is_current_point_fork() {
return get_next_points().size() > 1;
}
bool is_current_point_corner() {
return get_next_points().size() == 0;
}
bool is_current_point_exit() {
return PointType(trace.back().value) == PointType::Exit;
}
std::vector<Point> get_next_points() {
std::vector<Point> next_points;
int current_x = get_current_point().x;
int current_y = get_current_point().y;
Point left_point = get_point(current_x - 1, current_y);
Point top_point = get_point(current_x, current_y - 1);
Point right_point = get_point(current_x + 1, current_y);
Point bottom_point = get_point(current_x, current_y + 1);
if (left_point != NULL_POINT && left_point.value != PointType::Wall && !contains(trace, left_point)) {
next_points.push_back(left_point);
}
if (top_point != NULL_POINT && top_point.value != PointType::Wall && !contains(trace, top_point)) {
next_points.push_back(top_point);
}
if (right_point != NULL_POINT && right_point.value != PointType::Wall && !contains(trace, right_point)) {
next_points.push_back(right_point);
}
if (bottom_point != NULL_POINT && bottom_point.value != PointType::Wall && !contains(trace, bottom_point)) {
next_points.push_back(bottom_point);
}
return next_points;
}
bool contains(std::vector<Point> points, Point point) {
for (int i = 0; i < points.size(); i++) {
if (points[i] == point) {
return true;
}
}
return false;
}
int index_of(std::vector<Point> points, Point point) {
std::vector<Point>::iterator it = std::find(points.begin(), points.end(), point);
return it - points.begin();
}
public:
Solution() {
height = sizeof(map)/sizeof(map[0]);
width = sizeof(map[0])/sizeof(int);
map[0][0] = PointType::Enter;
map[height - 1][width - 1] = PointType::Exit;
}
std::vector<int> history;
void search_shortest_way() {
Point enter_point = get_point(PointType::Enter);
trace.push_back(enter_point);
bool go_towards = true;
int total_length = 1;
do {
//std::cout << "当前在 x = " << get_current_point().x << "; y = " << get_current_point().y << std::endl;
if (is_current_point_exit()) {
//std::cout << "Exit" << std::endl;
history.push_back(total_length);
if (!can_go_back()) {
return;
}
go_back();
go_towards = false;
total_length--;
}
else if (is_current_point_corner()) {
//std::cout << "当前点:死路" << std::endl;
if (!can_go_back()) {
return;
}
go_back();
go_towards = false;
total_length--;
}
else if (is_current_point_fork()) {
//std::cout << "当前点:岔路口" << std::endl;
std::vector<Point> next_points = get_next_points();
if (front_point == NULL_POINT) {
//std::cout << "当前选择:第 " << 1 << " 个分岔路口" << std::endl;
this->go_towards();
go_towards = true;
total_length++;
} else {
if (front_point == next_points.back()) {
//std::cout << "分岔路口选完了,往回走..." << std::endl;
if (!can_go_back()) {
return;
}
go_back();
go_towards = false;
total_length--;
} else {
int index = index_of(next_points, front_point);
//std::cout << "当前选择:第 " << index + 1 + 1 << " 个分岔路口" << std::endl;
this->go_towards(next_points[index + 1]);
go_towards = true;
total_length++;
}
}
}
else {
if (go_towards) {
this->go_towards();
total_length++;
} else {
if (!can_go_back()) {
return;
}
this->go_back();
total_length--;
}
}
} while (true);
}
};
int main() {
Solution solution;
solution.search_shortest_way();
std::cout << "寻路方案:" << solution.history.size() << std::endl;
for (int i = 0; i < solution.history.size(); i++) {
//std::cout << solution.history[i] << std::endl;
}
system("pause");
return 0;
}
这个代码我都不太愿意称其为算法,真的没啥算法可言,只是把它实现出来罢了。
适用的迷宫的行走条件是:不能走已经走过的路,允许上下左右四个方向走。因为限制不多,后期加入寻找最短路径,或者限制走动方向,也是很容易扩展的。
验证算法是否无误时在 Stackover Flow 发现了一篇 7 年前发布的几乎一样的问题 Find all possible paths from top-left to bottom-right corner of 4x4 array
标签:return,trace,point,右下角,Point,points,左上角,next,寻路 来源: https://www.cnblogs.com/thisDart/p/15838091.html