每日一题动态规划【从暴力递归到动态规划:三种解法】
作者:互联网
题目描述:
下面提供了三种题解:
package com.dp;
public class RobotWalk {
// N代表总共有多少个位置 K代表总共要多少步 aim代表目标位置
public static int ways1(int N, int start, int aim, int K) {
return process1(start, K, aim, N);
}
// cur代表当前位置 rest代表还剩下多少步要走 aim代表目标位置
public static int process1(int cur, int rest, int aim, int N) {
if (rest == 0)
return (cur == aim ? 1 : 0);
if (cur == 1)
return process1(2, rest - 1, aim, N);
if (cur == N)
return process1(N - 1, rest - 1, aim, N);
return process1(cur - 1, rest - 1, aim, N) + process1(cur + 1, rest - 1, aim, N);
}
public static int ways2(int N, int start, int aim, int K) {
int[][] dp = new int[N + 1][K + 1];
for (int i = 0; i <= N; i++) {
for (int j = 0; j <= K; j++) {
dp[i][j] = -1;
}
}
return process2(start, K, aim, N, dp);
}
public static int process2(int cur, int rest, int aim, int N, int[][] dp) {
if (dp[cur][rest] != -1) {
return dp[cur][rest];
}
int ans = 0;
if (rest == 0) {
ans = (cur == aim ? 1 : 0);
} else if (cur == 1) {
ans = process2(2, rest - 1, aim, N, dp);
} else if (cur == N) {
ans = process2(N - 1, rest - 1, aim, N, dp);
} else {
ans = process2(cur - 1, rest - 1, aim, N, dp) + process2(cur + 1, rest - 1, aim, N, dp);
}
dp[cur][rest] = ans;
return ans;
}
public static int ways3(int N, int start, int aim, int K) {
return process3(N, start, aim, K);
}
public static int process3(int N, int start, int aim, int K) {
int[][] dp = new int[N + 1][K + 1];
dp[aim][0] = 1;
for (int rest = 1; rest <= K; rest++) {
dp[1][rest] = dp[2][rest - 1];
for (int cur = 2; cur < N; cur++) {
dp[cur][rest] = dp[cur - 1][rest - 1] + dp[cur + 1][rest - 1];
}
dp[N][rest] = dp[N - 1][rest - 1];
}
return dp[start][K];
}
public static void main(String[] args) {
System.out.println(ways1(5, 2, 4, 6));
System.out.println(ways2(5, 2, 4, 6));
System.out.println(ways3(5, 2, 4, 6));
}
}
标签:return,cur,递归,int,rest,aim,动态,规划,dp 来源: https://blog.csdn.net/m0_49102380/article/details/122610426