其他分享
首页 > 其他分享> > 04.图的最小生成普利姆和克努斯卡尔

04.图的最小生成普利姆和克努斯卡尔

作者:互联网

一、克努斯卡尔的代码实现

1. 图的邻接矩阵实现

mgraph.go

package graph

import "errors"

const MaxSize = 20

type MGraph struct {
	Edges   [MaxSize][MaxSize]int
	EdgeNum int
	Nodes   []string
	Indexs  map[string]int
}

type Edge struct {
	NodeStart, NodeEnd string
	Val                int
}

func NewMGraph() MGraph {
	var g MGraph
	for k, v := range g.Edges {
		for kk, _ := range v {
			g.Edges[k][kk] = -1
		}
	}
	g.Indexs = make(map[string]int)
	return g

}

func (g *MGraph) AddNode(nodeName string) error {
	if g.Indexs == nil {
		return errors.New("不是有效的图")
	}
	if _, ok := g.Indexs[nodeName]; ok {
		return errors.New("已经添加过此结点")
	}
	g.Indexs[nodeName] = len(g.Nodes)
	g.Nodes = append(g.Nodes, nodeName)
	return nil
}

func (g *MGraph) AddEdge(nodeName1, nodeName2 string, val int) error {

	if _, ok := g.Indexs[nodeName1]; !ok {
		return errors.New("结点不存在:" + nodeName1)
	}
	if _, ok := g.Indexs[nodeName2]; !ok {
		return errors.New("结点不存在:" + nodeName2)
	}
	if g.Edges[g.Indexs[nodeName1]][g.Indexs[nodeName2]] != -1 {
		return errors.New("边已经存在")
	}

	g.Edges[g.Indexs[nodeName1]][g.Indexs[nodeName2]] = val
	g.Edges[g.Indexs[nodeName2]][g.Indexs[nodeName1]] = val
	g.EdgeNum++
	return nil
}

func (g *MGraph) GetEdgeList() []Edge {
	var edgeList []Edge

	for i := 0; i < len(g.Nodes); i++ {
		for j := 0; j < i; j++ {
			if g.Edges[i][j] >= 0 {
				edgeList = append(
					edgeList,
					Edge{NodeStart: g.Nodes[i], NodeEnd: g.Nodes[j], Val: g.Edges[i][j]},
				)
			}
		}
	}

	return edgeList
}

2.克努斯卡尔实现代码

Kruskal.go

package minimum_spanning_tree

import (
	"fmt"
	"gitee.com/gudongkun/datestruct/dataStructures/graph"
	"gitee.com/gudongkun/datestruct/dataStructures/unionfind"
	"sort"
)

func GetExGraph() *graph.MGraph {
	g := graph.NewMGraph()

	g.AddNode("A")
	g.AddNode("B")
	g.AddNode("C")
	g.AddNode("D")
	g.AddNode("E")
	g.AddNode("F")
	g.AddNode("G")
	g.AddNode("H")
	g.AddNode("I")
	g.AddNode("J")

	g.AddEdge("A", "B", 5)
	g.AddEdge("A", "D", 9)
	g.AddEdge("A", "E", 1)
	g.AddEdge("B", "D", 2)
	g.AddEdge("B", "C", 4)
	g.AddEdge("C", "H", 4)
	g.AddEdge("C", "I", 1)
	g.AddEdge("C", "J", 8)
	g.AddEdge("D", "H", 2)
	g.AddEdge("D", "G", 11)
	g.AddEdge("D", "F", 5)
	g.AddEdge("D", "E", 2)
	g.AddEdge("E", "F", 1)
	g.AddEdge("F", "G", 7)
	g.AddEdge("G", "H", 1)
	g.AddEdge("G", "I", 4)
	g.AddEdge("H", "I", 6)
	g.AddEdge("I", "J", 0)

	return &g
}

func Kruskal() []graph.Edge {
	var treeEdge []graph.Edge
	g := GetExGraph()
	originEdge := g.GetEdgeList()

	//1.给边排序
	sort.SliceStable(originEdge, func(i, j int) bool {
		return originEdge[i].Val < originEdge[j].Val
	})
	//2.构建并查集
	union := unionfind.NewUnionFind(g.Nodes)
	for _, v := range originEdge {
		if union.IsConnected(v.NodeStart, v.NodeEnd) {
			continue
		}
		treeEdge = append(treeEdge, v)
		union.Unify(v.NodeStart, v.NodeEnd)
		if union.Groups() == 1 {
			break
		}
	}

	if union.Groups()>1 {
		fmt.Println("非联通图",union)
	} else  {
		fmt.Println("生成树为:",treeEdge)
	}

	return treeEdge
}

3.测试代码

Kruskal_test.go

package minimum_spanning_tree

import "testing"

func TestGetExGraph(t *testing.T) {
	g := GetExGraph()
	if g.EdgeNum != 18 {
		t.Error("GetExGraph Error")
	}

	if len(g.GetEdgeList()) != 18 {
		t.Error("GetEdgeList Error")
	}
}

func TestKruskal(t *testing.T) {
	Kruskal()
}


二、图的普利姆算法

算法思想:在图中任意选出一个顶点作为一颗树,选出和这个顶点相连的最短路径,把路径加入树中,边加入选择的边中,此时得到了一颗有两个边的树。然后再从与这颗树相连的边中中选出最短的边,把他的另外一个顶点加入树,边加入选择边,依次类推,直到所有顶点加入到树中。此时得到的树就是最小生成树。

1、算法描述

  1. 初始化 三个数组
    seleted:记录节点是否再已经再生成树中,下标代表节点,初始都为false;
    minDist: 记录某一时刻,这个点到 已选顶点的集合的 最小权边的权值大小,初始为无穷大
    prev :记录 顶点连再树中的父元素的下标。初始都为-1,代表不连接任何顶点。

  2. 初始化任意顶点s操作:
    任意选择一个顶点s,添加到生成树中(seleted[s] = true);
    点s已经进入到生成树中,到生成树的距离已经没有意义,设置为-1(minDist[s] = -1);
    初始顶点没有,父元素(prev[s] = -1)

  3. 更新第一个顶点s操作:
    扫描所有与顶点s 连接的边(cp另外一个顶点,v边的权重值),如果顶点到这个店的距离,比minDist中第小,minDist[cp] = v ,prev[cp] = s

  4. 扫描:
    扫描所有未选中结点(seleted中值为false的点),找到minDist 值最小的点p

  5. 添加:
    添加点p到生成树中(seleted[p] = true)
    p点到树的距离,失去意义设置为-1(minDist[p] = -1)

  6. 更新:
    扫描所有与顶点p 连接的边(cp边的另外一个顶点,v边的权重值),如果顶点到这个店的距离,比minDist中第小,minDist[cp] = v ,prev[cp] = p

  7. 循环执行 4.扫描、5.添加、6.更新 ,一直到seleted中

  8. 所有的点都变成 true,
    通过prev数组,就能推倒出最小生成树的边。

2、图形描述

图形演示请参考:https://www.bilibili.com/video/BV1Eb41177d1

3、算法代码实现

(1)图增加获取相邻结点接口

func (g *MGraph) GetConnectedEdges(ele string) []Edge {
	var edgeList []Edge
	k := g.Indexs[ele]
	for i := 0; i < len(g.Nodes); i++ {
		if g.Edges[k][i] >= 0 {
			edgeList = append(
				edgeList,
				Edge{NodeStart: g.Nodes[k], NodeEnd: g.Nodes[i], Val: g.Edges[k][i]},
			)
		}
	}
	return edgeList
}

(2)普利姆算法

prim.go

package minimum_spanning_tree

import "fmt"

func Prim() map[string]string {
	g := GetExGraph()
	//初始化
	selected := make(map[string]bool)
	minDist := make(map[string]int)
	prev := make(map[string]string)

	for _, node := range g.Nodes {
		selected[node] = false
		minDist[node] = 9999999
	}
	// 添加第一个顶点
	selected[g.Nodes[0]] = true
	minDist[g.Nodes[0]] = -1
	prev[g.Nodes[0]] = "root"
	// 更新第一个顶点
	for _, edge := range g.GetConnectedEdges(g.Nodes[0]) {
		if minDist[edge.NodeEnd] > edge.Val {
			minDist[edge.NodeEnd] = edge.Val
			prev[edge.NodeEnd] = g.Nodes[0]
		}
	}
	for {
		// scan操作
		minK := ""
		minV := 9999999
		for k, v := range selected {
			if v {
				continue
			}
			if minDist[k] < minV { //选出未选中的点中,距离最小的点
				minK = k
				minV = minDist[k]
			}
		}
		if minK == "" {
			break
		}
		//add 操作
		selected[minK] = true // minK 设置为已选择
		minDist[minK] = -1    // minK 的距离失效
		//更新操作,更新未选中点到 selected 的距离
		for _, edge := range g.GetConnectedEdges(minK) {
			if minDist[edge.NodeEnd] > edge.Val {
				minDist[edge.NodeEnd] = edge.Val
				prev[edge.NodeEnd] = minK
			}
		}
	}

	fmt.Println(prev, len(prev))
	return prev
}

(3) 普利姆算法单元测试

package minimum_spanning_tree

import "testing"

func TestPrim(t *testing.T) {
	prev := Prim()
	if len(prev) != 10 {
		t.Error(prev)
	}
}

(4)修改后图的完整代码

package graph

import "errors"

const MaxSize = 20

type MGraph struct {
	Edges   [MaxSize][MaxSize]int
	EdgeNum int
	Nodes   []string
	Indexs  map[string]int
}

type Edge struct {
	NodeStart, NodeEnd string
	Val                int
}

func NewMGraph() MGraph {
	var g MGraph
	for k, v := range g.Edges {
		for kk, _ := range v {
			g.Edges[k][kk] = -1
		}
	}
	g.Indexs = make(map[string]int)
	return g

}

func (g *MGraph) AddNode(nodeName string) error {
	if g.Indexs == nil {
		return errors.New("不是有效的图")
	}
	if _, ok := g.Indexs[nodeName]; ok {
		return errors.New("已经添加过此结点")
	}
	g.Indexs[nodeName] = len(g.Nodes)
	g.Nodes = append(g.Nodes, nodeName)
	return nil
}

func (g *MGraph) AddEdge(nodeName1, nodeName2 string, val int) error {

	if _, ok := g.Indexs[nodeName1]; !ok {
		return errors.New("结点不存在:" + nodeName1)
	}
	if _, ok := g.Indexs[nodeName2]; !ok {
		return errors.New("结点不存在:" + nodeName2)
	}
	if g.Edges[g.Indexs[nodeName1]][g.Indexs[nodeName2]] != -1 {
		return errors.New("边已经存在")
	}

	g.Edges[g.Indexs[nodeName1]][g.Indexs[nodeName2]] = val
	g.Edges[g.Indexs[nodeName2]][g.Indexs[nodeName1]] = val
	g.EdgeNum++
	return nil
}

func (g *MGraph) GetEdgeList() []Edge {
	var edgeList []Edge

	for i := 0; i < len(g.Nodes); i++ {
		for j := 0; j < i; j++ {
			if g.Edges[i][j] >= 0 {
				edgeList = append(
					edgeList,
					Edge{NodeStart: g.Nodes[i], NodeEnd: g.Nodes[j], Val: g.Edges[i][j]},
				)
			}
		}
	}

	return edgeList
}

func (g *MGraph) GetConnectedEdges(ele string) []Edge {
	var edgeList []Edge
	k := g.Indexs[ele]
	for i := 0; i < len(g.Nodes); i++ {
		if g.Edges[k][i] >= 0 {
			edgeList = append(
				edgeList,
				Edge{NodeStart: g.Nodes[k], NodeEnd: g.Nodes[i], Val: g.Edges[k][i]},
			)
		}
	}
	return edgeList
}

相关代码的git 连接:

https://gitee.com/gudongkun/datestruct

标签:普利,return,string,04,Edges,斯卡尔,Indexs,Nodes,AddEdge
来源: https://blog.csdn.net/gudongkun1121/article/details/122455469