labelme VOC
作者:互联网
labelme VOC
import os import numpy as np import codecs import json from glob import glob import cv2 import shutil from sklearn.model_selection import train_test_split #1.标签路径 labelme_path = "data1/" #原始labelme标注数据路径 saved_path = "./VOC2007/" #保存路径 #2.创建要求文件夹 if not os.path.exists(saved_path + "Annotations"): os.makedirs(saved_path + "Annotations") if not os.path.exists(saved_path + "JPEGImages/"): os.makedirs(saved_path + "JPEGImages/") if not os.path.exists(saved_path + "ImageSets/Main/"): os.makedirs(saved_path + "ImageSets/Main/") #3.获取待处理文件 files1 = glob(labelme_path + "*.json") #files = [i.split("/")[-1].split(".json")[0] for i in files] files =[] for i in files1: print(i.split("\\")) print(i.split("\\")[-1]) print(i.split("\\")[-1].split(".json")[0]) files.append(i.split("\\")[-1].split(".json")[0]) print(files) #4.读取标注信息并写入 xml for json_file_ in files: print(json_file_) json_filename = labelme_path + json_file_ + ".json" json_file = json.load(open(json_filename,"r",encoding="utf-8")) height, width, channels = cv2.imread(labelme_path + json_file_ +".jpg").shape with codecs.open(saved_path + "Annotations/"+json_file_ + ".xml","w","utf-8") as xml: xml.write('<annotation>\n') xml.write('\t<folder>' + 'UAV_data' + '</folder>\n') xml.write('\t<filename>' + json_file_ + ".jpg" + '</filename>\n') xml.write('\t<source>\n') xml.write('\t\t<database>The UAV autolanding</database>\n') xml.write('\t\t<annotation>UAV AutoLanding</annotation>\n') xml.write('\t\t<image>flickr</image>\n') xml.write('\t\t<flickrid>NULL</flickrid>\n') xml.write('\t</source>\n') xml.write('\t<owner>\n') xml.write('\t\t<flickrid>NULL</flickrid>\n') xml.write('\t\t<name>ChaojieZhu</name>\n') xml.write('\t</owner>\n') xml.write('\t<size>\n') xml.write('\t\t<width>'+ str(width) + '</width>\n') xml.write('\t\t<height>'+ str(height) + '</height>\n') xml.write('\t\t<depth>' + str(channels) + '</depth>\n') xml.write('\t</size>\n') xml.write('\t\t<segmented>0</segmented>\n') for multi in json_file["shapes"]: points = np.array(multi["points"]) xmin = min(points[:,0]) xmax = max(points[:,0]) ymin = min(points[:,1]) ymax = max(points[:,1]) label = multi["label"] if xmax <= xmin: pass elif ymax <= ymin: pass else: xml.write('\t<object>\n') xml.write('\t\t<name>'+"bubble"+'</name>\n') xml.write('\t\t<pose>Unspecified</pose>\n') xml.write('\t\t<truncated>1</truncated>\n') xml.write('\t\t<difficult>0</difficult>\n') xml.write('\t\t<bndbox>\n') xml.write('\t\t\t<xmin>' + str(xmin) + '</xmin>\n') xml.write('\t\t\t<ymin>' + str(ymin) + '</ymin>\n') xml.write('\t\t\t<xmax>' + str(xmax) + '</xmax>\n') xml.write('\t\t\t<ymax>' + str(ymax) + '</ymax>\n') xml.write('\t\t</bndbox>\n') xml.write('\t</object>\n') print(json_filename,xmin,ymin,xmax,ymax,label) xml.write('</annotation>') #5.复制图片到 VOC2007/JPEGImages/下 image_files = glob(labelme_path + "*.jpg") print("copy image files to VOC007/JPEGImages/") for image in image_files: shutil.copy(image,saved_path +"JPEGImages/") #6.split files for txt txtsavepath = saved_path + "ImageSets/Main/" ftrainval = open(txtsavepath+'/trainval.txt', 'w') ftest = open(txtsavepath+'/test.txt', 'w') ftrain = open(txtsavepath+'/train.txt', 'w') fval = open(txtsavepath+'/val.txt', 'w') total_files = glob("./VOC2007/Annotations/*.xml") total_files = [i.split("/")[-1].split(".xml")[0] for i in total_files] #test_filepath = "" for file in total_files: ftrainval.write(file + "\n") #test #for file in os.listdir(test_filepath): # ftest.write(file.split(".jpg")[0] + "\n") #split train_files,val_files = train_test_split(total_files,test_size=0.15,random_state=42) #train for file in train_files: ftrain.write(file + "\n") #val for file in val_files: fval.write(file + "\n") ftrainval.close() ftrain.close() fval.close() #ftest.close()
参考:http://spytensor.com/index.php/archives/35/
#######################
标签:xml,files,VOC,write,json,file,path,labelme 来源: https://www.cnblogs.com/herd/p/15783037.html