其他分享
首页 > 其他分享> > Divisors CodeForces - 1033D(数论)

Divisors CodeForces - 1033D(数论)

作者:互联网

Divisors CodeForces - 1033D(数论)

题目大意

给出n个数,每个数有3到5个因数,问n个数的积有多少因数

解题思路

由于每个数有3-5个因子,在除去了数本身之外就只有这个几种情况

首先对原数进行开二,三,四方,若能开完全则直接分解,否则进行进一步的分解

对需要进一步分解的数,通过与其他数之间求公因数,得到其因子,若没有公因子就认定其存在两个仅有其本身拥有的素因子,由此编写代码即可

AC代码

#include<bits/stdc++.h>
using namespace std;
#define int long long 
typedef long long LL;
const LL mod=998244353;
const double eps=1e-6;
LL arr[505];
set<LL> s;
bool vis[505];
int32_t main()
{

  memset(vis,0,sizeof(vis));
	int n;
	scanf("%lld",&n);
	for(int i=1;i<=n;i++) scanf("%lld",&arr[i]);
	vector<LL> exsolve;
	map<LL,int> mp;
	for(int i=1;i<=n;i++)
	{
		LL x=arr[i];
		LL er=pow(double(x),0.5)+eps,san=pow(double(x),1.0/3.0)+eps,si=pow(double(x),0.25)+eps;
		if(si*si*si*si==x) {mp[si]+=4;s.insert(si);continue;}
		if(er*er==x) {mp[er]+=2;s.insert(er);continue;}
		if(san*san*san==x) {mp[san]+=3;s.insert(san);continue;}
		exsolve.push_back(x);
	}
	LL ss;
	LL ans=1;
	sort(exsolve.begin(),exsolve.end());
	int cnt=0;
	for(int i=0;i<exsolve.size();i++)
	{
	        cnt=0;
		ss=-1;
		if(vis[i]) continue;
		for(int j=0;j<exsolve.size();j++)	
		{
		  if(exsolve[j]==exsolve[i]){vis[j]=1;cnt++;continue;}
			LL gcd=__gcd(exsolve[i],exsolve[j]);
			if(gcd!=1&&gcd!=exsolve[i])
			{
				ss=gcd;
			}
		}
		for(auto x:s)if(exsolve[i]%x==0) {ss=x;}
		if(ss==-1){ans=(ans*(1LL+cnt)*(1LL+cnt))%mod;}
		else mp[ss]+=cnt,mp[exsolve[i]/ss]+=cnt;
	}
	for(auto x:mp) ans=(ans*(x.second+1))%mod;
	printf("%lld\n",ans);
}

标签:const,int,LL,CodeForces,long,vis,因子,1033D,Divisors
来源: https://blog.csdn.net/baiyifeifei/article/details/88079616