换个新头像(解决彩色图亮度不均衡)
作者:互联网
文章目录
前言
CSDN博客好久没有换过头像了,想换个新头像,在相册里面翻来翻去,然后就找到以前养的小宠物的一些照片,有一张特别有意思
惊恐到站起来的金丝熊:这家伙不会要吃我吧
没见过仓鼠的小猫:这啥玩意儿?
好,就决定把这张图当自己的头像了
一顿操作之后,把头像换成了这张照片
这时候我想起来我学过图像处理,这用亮度变换搞一下不就可以了吗,搞起来!
注意:一般对灰度图进行亮度变换的多一点,但是我这张图是RGB图(准确来说是RGBA,但我们只取前三个通道),对于RGB图,我这里对其每个通道分别进行处理然后拼接处理
处理
对比度拉伸
也就是把图像重新缩放到指定的范围内
# 对比度拉伸
p1, p2 = np.percentile(img, (0, 70)) # numpy计算多维数组的任意百分比分位数
rescale_img = np.uint8((np.clip(img, p1, p2) - p1) / (p2 - p1) * 255)
其中,numpy的percentile函数可以计算多维数组的任意百分比分位数,因为我的图片中整体偏暗,我就把原图灰度值的0% ~ 70%缩放到0 ~255
log变换
使用以下公式进行映射:
O
=
g
a
i
n
∗
l
o
g
(
1
+
I
)
O = gain*log(1 + I)
O=gain∗log(1+I)
# 对数变换
log_img = np.zeros_like(img)
scale, gain = 255, 1.5
for i in range(3):
log_img[:, :, i] = np.log(img[:, :, i] / scale + 1) * scale * gain
Gamma校正
使用以下公式进行映射:
O = I γ ∗ g a i n O = I^{\gamma} * gain O=Iγ∗gain
# gamma变换
gamma, gain, scale = 0.7, 1, 255
gamma_img = np.zeros_like(img)
for i in range(3):
gamma_img[:, :, i] = ((img[:, :, i] / scale) ** gamma) * scale * gain
直方图均衡化
使用直方图均衡后的图像具有大致线性的累积分布函数,其优点是不需要参数。
其原理为,考虑这样一个图像,它的像素值被限制在某个特定的值范围内,即灰度范围不均匀。所以我们需要将其直方图缩放遍布整个灰度范围(如下图所示,来自维基百科),这就是直方图均衡化所做的(简单来说)。这通常会提高图像的对比度。
这里使用OpenCV来演示。
# 直方图均衡化
equa_img = np.zeros_like(img)
for i in range(3):
equa_img[:, :, i] = cv.equalizeHist(img[:, :, i])
对比度自适应直方图均衡化(CLAHE)
这是一种自适应直方图均衡化方法
OpenCV提供了该方法。
# 对比度自适应直方图均衡化
clahe_img = np.zeros_like(img)
clahe = cv.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
for i in range(3):
clahe_img[:, :, i] = clahe.apply(img[:, :, i])
处理结果展示
使用Matplotlib显示上述几种方法的结果:
可以看到,前四种方法效果都差不多,都有一个问题亮的地方过于亮,这是因为他们考虑的是全局对比度,而且因为我们使用的彩色图像原因,使用log变换的结果图中有部分区域色彩失真。最后一种CLAHE方法考虑的是局部对比度,所以效果会好一点。
因为图像是彩色的,这里我只绘制了R通道的直方图(红色线)及其累积分布函数(黑色线)
可以看到均衡后的图像具有大致线性的累积分布函数。
总之,经过以上的探索,我最终决定使用CLAHE均衡后的结果
感觉是比之前的好了点
标签:log,img,均衡化,亮度,头像,直方图,换个,对比度,gain 来源: https://blog.csdn.net/weixin_44456692/article/details/122235564