Numpy基础
作者:互联网
Numpy基础
s =1/(1+math.exp(-x)) #不能用作向量
import numpy as np
# numpy可以用作向量
# example of np.exp
x = np.array([1, 2, 3])
print(np.exp(x)) # result is (exp(1), exp(2), exp(3))
实现一个sigmod
import numpy as np # this means you can access numpy functions by writing np.function() instead of numpy.function()
def sigmoid(x):
"""
Compute the sigmoid of x
Arguments:
x -- A scalar or numpy array of any size
Return:
s -- sigmoid(x)
"""
### START CODE HERE ### (≈ 1 line of code)
s = 1 / (1 + np.exp(-x))
### END CODE HERE ###
return s
x = np.array([1, 2, 3])
sigmoid(x)
out[9]:array([0.73105858, 0.88079708, 0.95257413])
Sigmoid gradient
标签:sigmoid,numpy,基础,shape,np,array,Numpy,### 来源: https://www.cnblogs.com/suehoo/p/15744511.html