其他分享
首页 > 其他分享> > 自控理论 第3章-1 暂态响应分析

自控理论 第3章-1 暂态响应分析

作者:互联网

3.1 内容概要

3.2 暂态响应分析

暂态响应:课上没有说明,自己找了找发现课上表达的意思和其他地方定义的意思不大一样,不过简单理解应该就是指:系统从时间零点到稳定之前这一段时间内的零状态(为了便于比较不同系统而默认是零状态)时域响应。

3.2.1 零点与极点

定义

对于传递函数\(G(s)\),可以通过部分因式分解将其化为以下形式

\[\begin{aligned} G(s)=& \frac{c_{1,1}}{\left(s-p_{1}\right)^{n_{1}}}+\frac{c_{1,2}}{\left(s-p_{1}\right)^{n_{1}-1}}+\cdots+\frac{c_{1, n_{1}}}{s-p_{1}} \\ &+\frac{c_{2,1}}{\left(s-p_{2}\right)^{n_{2}}}+\frac{c_{2,2}}{\left(s-p_{2}\right)^{n_{2}-1}}+\cdots+\frac{c_{2, n_{2}}}{s-p_{2}}+\cdots \\ &+\frac{c_{m, 1}}{\left(s-p_{m}\right)^{n_{m}}}+\frac{c_{m, 2}}{\left(s-p_{m}\right)^{n_{m}-1}}+\cdots+\frac{c_{m, n_{m}}}{s-p_{m}}+b_{n} \end{aligned} \]


构成控制系统的基本元素——一阶系统和二阶系统

上述系统拆分成的部分因式可以根据极点是哪一种根而分为三类:非重根的实根、非重根的复数根和重根。

对于后两种情况,具体算一下来说明:用\(p_i=\sigma_i+j\omega_i\)和\(p_{i+1}=\overline p_i\)表示一对共轭极点,合并二者的部分因式得到:

\[\frac{c_{i,j}}{(s-p_i)^{n_i-j+1}}+\frac{\overline c_{i,j}}{(s-\overline p_i)^{n_i-j+1}} =\frac{c_{i,j}(s-\overline p_i)^{n_i-j+1}+\overline c_{i,j}(s-p_i)^{n_i-j+1}}{[(s-\sigma_i)^2+\omega_i^2]^{n_i-j+1}} \]

由拉普拉斯变换的性质又有

\[\mathcal L[tf(t)]=-\frac{\mathrm d}{\mathrm d s}\tilde f(s) \]

所以如果了解了一阶系统\(\frac{1}{s-p_i}\)和二阶系统\(\frac{\alpha_i s+\beta_i}{(s-\sigma_i)^2+\omega_i^2}\)的时域响应,就可以方便地得到任意部分因式所表示的系统的时域响应,进而通过线性叠加就可以得到任意系统的时域响应。因此,称一阶系统和二阶系统是构成控制系统的基本元素

3.2.2 一阶系统的暂态响应

单位负反馈形式的一阶系统

标准一阶系统的微分方程和传递函数如下

\[T\dot y(t)+y(t)=r(t)\\ \dot y(t)=\frac{1}{T}[r(t)-y(t)]\\ \Rightarrow \frac{\tilde y(s)}{\tilde r(s)}=\frac{1}{Ts+1} \]

对应的系统框图如下

_1

单位冲激响应(Unit-Impulse Response)

\[\tilde y(s)=\frac{1}{Ts+1}\\ \Rightarrow y(t)=\frac{1}{T}e^{-\frac{t}{T}},\ t\ge0 \]

_2

注意横坐标的单位是\(T\),下同。

单位阶跃响应(Unit-Step Response)

输入为阶跃函数\(r(t)=u_{-1}(t)\),有

\[\tilde y(s)=\frac{1}{Ts+1}\cdot \frac{1}{s}=\frac{1}{s}-\frac{1}{s+1/T}\\ \Rightarrow y(t)=1-e^{-\frac{t}{T}},\ t\ge0 \]

_3

单位斜坡响应(Unit-Ramp Response)

\[\tilde y(s)=\frac{1}{Ts+1}\cdot \frac{1}{s^2}=\frac{1}{s^2}-\frac{T}{s}+\frac{T}{s+1/T}\\ \Rightarrow y(t)=t-T+Te^{-\frac{t}{T}},\ t\ge0 \]

_5


可以发现单位冲激响应是单位阶跃响应的导数,单位阶跃响应是单位斜坡响应的导数,这个规律可以推广到其它LTI(Linear Time-Invariant)系统。

3.2.3 二阶系统的暂态响应

标准二阶系统

定义如下

\[\frac{\tilde{y}(s)}{\tilde{r}(s)}=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}=\frac{\frac{\omega_{n}^{2}}{s\left(s+2 \zeta \omega_{n}\right)}}{1+\frac{\omega_{n}^{2}}{s\left(s+2 \zeta \omega_{n}\right)}} \]

单位阶跃响应

由单位阶跃响应,有\(r(s)=\frac{1}{s}\)。

欠阻尼状态

有\(0<\zeta<1\)。定义阻尼固有频率( damped natural frequency)\(\omega_d\triangleq\omega_n\sqrt{1-\zeta^2}\),则传递函数可以改写为

\[\frac{\tilde{y}(s)}{\tilde{r}(s)}=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\zeta^2\omega_n^2+\omega_{d}^{2}}=\frac{\omega_{n}^{2}}{(s+\zeta\omega_n)^{2}+\omega_{d}^{2}} \]

做部分因式分解

\[\tilde y(s)=\frac{\omega_{n}^{2}}{s[(s+\zeta\omega_n)^{2}+\omega_{d}^{2}]}=\frac{c_1}{s}+\frac{c_2}{s+\zeta\omega_n+j\omega_d}+\frac{\overline c_2}{s+\zeta\omega_n-j\omega_d} \]

由留数定理

\[\begin{aligned} c_{1} &=\lim _{s \rightarrow 0} s \cdot \tilde{y}(s)=\frac{\omega_{n}^{2}}{\omega_{n}^{2}}=1 \\ c_{2} &=\lim _{s \rightarrow-\left(\zeta \omega_{n}+j \omega_{d}\right)}\left(s+\zeta \omega_{n}+j \omega_{d}\right) \tilde{y}(s)\\ &=\left.\frac{\omega_{n}^{2}}{s\left(s+\zeta \omega_{n}-j \omega_{d}\right)}\right|_{s=-\left(\zeta \omega_{n}+j \omega_{d}\right)} \\ &=\frac{\omega_{n}^{2}}{2 j \omega_{d}\left(\zeta \omega_{n}+j \omega_{d}\right)}\\ &=-\frac{\omega_n^2}{2\omega_d(\zeta^2\omega_n^2+\omega_d^2)}(\omega_d+j\zeta\omega_n) \end{aligned} \]

带入化简得(这一步具体算起来比较麻烦)

\[\begin{aligned} &\frac{c_2}{s+\zeta\omega_n+j\omega_d}+\frac{\overline c_2}{s+\zeta\omega_n-j\omega_d}\\ =&-\frac{s+2\zeta\omega_n}{(s+\zeta\omega_n)^2+\omega_d^2}\\ =&-\frac{s+\zeta\omega_n}{(s+\zeta\omega_n)^2+\omega_d^2}-\frac{\zeta\omega_n}{\omega_d}\frac{\omega_d}{(s+\zeta\omega_n)^2+\omega_d^2} \end{aligned} \]

于是可以进一步化简复频域响应

\[\tilde y(s)=\frac{1}{s}-\frac{s+\zeta\omega_n}{(s+\zeta\omega_n)^2+\omega_d^2}-\frac{\zeta\omega_n}{\omega_d}\frac{\omega_d}{(s+\zeta\omega_n)^2+\omega_d^2} \]

定义\(\cos\varphi\triangleq\zeta\),则时域响应为

\[\begin{aligned} y(t)=&1-\frac{e^{-\zeta\omega_nt}}{\sqrt{1-\zeta^2}}[\sqrt{1-\zeta^2}\cos(\omega_dt)+\zeta\sin(\omega_dt)]\\ =&1-\frac{e^{-\zeta\omega_nt}}{\sqrt{1-\zeta^2}}\sin(\omega_dt+\varphi)\\ =&1-\frac{e^{-\zeta\omega_nt}}{\sqrt{1-\zeta^2}}\sin(\sqrt{1-\zeta^2}\omega_nt+\varphi),\ t\ge 0\\ \end{aligned} \]

具体求解时域响应不是重点,主要是要熟悉\(\zeta\)对标准二阶系统暂态响应、极点分布的影响,下同。

_7

临界阻尼状态

有\(\zeta=1\)。

\[\tilde y(s)=\frac{\omega_n^2}{s(s+\omega_n)^2}=\frac{1}{s}+\frac{-\omega_n}{(s+\omega_n)^2}+\frac{-1}{s+\omega_n}\\ \Rightarrow y(t)=1-\omega_nte^{-\omega_nt}-e^{-\omega_nt}=1-e^{-\omega_nt}(\omega_nt+1) \]

_10

过阻尼状态

有\(\zeta>1\)。直接求极点+留数定理算就完啦,结果表示比较复杂,可以用极点

\[\left\{ \begin{aligned} s_1&=-\zeta\omega_n-\omega_n\sqrt{\zeta^2-1}\\ s_2&=-\zeta\omega_n+\omega_n\sqrt{\zeta^2-1} \end{aligned} \right. \]

表示成简化一些的如下形式

\[\begin{aligned} y(t)=&1+\frac{1}{2\sqrt{\zeta^2-1}}(\frac{e^{-(\zeta+\sqrt{\zeta^2-1})\omega_nt}}{\zeta+\sqrt{\zeta^2-1}}+\frac{e^{-(\zeta-\sqrt{\zeta^2-1})\omega_nt}}{\zeta-\sqrt{\zeta^2-1}})\\ =&1+\frac{\omega_n}{2\sqrt{\zeta^2-1}}(\frac{e^{s_1t}}{-s_1}+\frac{e^{s_2t}}{s_2})\\ \end{aligned} \]

_11

\(\zeta\)对标准二阶系统的影响

二阶系统的时域指标

因为阶跃输入易于产生,且在数学上有了阶跃响应就可以推知任意输入的响应,所以经常用阶跃响应中的一些指标来描述系统的特性。本节即计算欠阻尼二阶系统单位阶跃响应中的一些常用指标。

_12

伺服系统的速度反馈

引入速度反馈可能改善系统性能(改变二阶系统的\(\zeta\)),这一节介绍了一个例子。一个带有速度反馈的伺服系统的简化系统框图如下

_17

消去内环得到

_18

求其传递函数如下

\[\frac{\tilde\theta(s)}{\tilde\theta_r(s)}=\frac{\frac{K}{(Js+B+KK_h)s}}{1+\frac{K}{(Js+B+KK_h)s}}=\frac{K/J}{s^2+(B+KK_h)/J\cdot s+K/J} \]

于是得到

\[\left\{ \begin{aligned} \zeta=&\frac{B+KK_h}{2\sqrt{KJ}}\\ \omega_n=&\sqrt{K/J} \end{aligned} \right. \]

于是,在引入速度反馈后,通过调节\(K_h\)可以在不影响\(\omega_n\)的条件下改变\(\zeta\)(引入速度反馈之前调节\(\zeta\)会同时影响\(\omega_n\)),进而使系统的性能达到需要理想状态。不过需要注意的是,因为噪声一般都是高频的,引入速度反馈可能会放大噪声。

标签:frac,暂态,响应分析,nt,系统,sqrt,zeta,自控,omega
来源: https://www.cnblogs.com/harold-lu/p/15720566.html