其他分享
首页 > 其他分享> > 669. 修剪二叉搜索树

669. 修剪二叉搜索树

作者:互联网

669. 修剪二叉搜索树

题目链接:669. 修剪二叉搜索树(中等)

给你二叉搜索树的根节点 root ,同时给定最小边界low 和最大边界 high。通过修剪二叉搜索树,使得所有节点的值在[low, high]中。修剪树不应该改变保留在树中的元素的相对结构(即,如果没有被移除,原有的父代子代关系都应当保留)。 可以证明,存在唯一的答案。

所以结果应当返回修剪好的二叉搜索树的新的根节点。注意,根节点可能会根据给定的边界发生改变。

示例 1:

输入:root = [1,0,2], low = 1, high = 2
输出:[1,null,2]

示例 2:

输入:root = [3,0,4,null,2,null,null,1], low = 1, high = 3
输出:[3,2,null,1]

示例 3:

输入:root = [1], low = 1, high = 2
输出:[1]

示例 4:

输入:root = [1,null,2], low = 1, high = 3
输出:[1,null,2]

示例 5:

输入:root = [1,null,2], low = 2, high = 4
输出:[2]

提示:

解题思路

C++

class Solution {
public:
    TreeNode* trimBST(TreeNode* root, int low, int high) {
        if (root == nullptr) return root;
        if (root->val < low) {
            // 将根节点的右子树代替根节点(即剪掉了根节点及左子树),并递归遍历右子树继续寻找符合条件的节点
            root = root->right;
            return trimBST(root, low, high); // 寻找符合区间[low, high]的节点
        }
        if (root->val > high) {
            // 将根节点的左子树代替根节点(即剪掉了根节点及右子树),并递归遍历左子树继续寻找符合条件的节点
            root = root->left;
            return trimBST(root, low, high); // 寻找符合区间[low, high]的节点
        }
        root->left = trimBST(root->left, low, high); // 接住符合条件的左孩子
        root->right = trimBST(root->right, low, high); // 接住符合条件的右孩子
        return root;
    }
};

JavaScript

var trimBST = function(root, low, high) {
    if (root === null) return root;
    if (root.val < low) {
        return trimBST(root.right, low, high);
    }
    if (root.val > high) {
        return trimBST(root.left, low, high);
    }
    root.left = trimBST(root.left, low, high);
    root.right = trimBST(root.right, low, high);
    return root;
};

 

 

 

标签:修剪,669,二叉,high,low,trimBST,null,root,节点
来源: https://www.cnblogs.com/wltree/p/15704396.html