从零开始数据分析Kaggle项目——泰坦尼克号(五)
作者:互联网
从零开始数据分析Kaggle项目—泰坦尼克号2—2.1
# title: "Kaggle项目泰坦尼克号 2__2.1"
# author: "小鱼"
# date: "2021-12-17"
import pandas as pd
import numpy as np
df = pd.read_csv("train.csv")
# 查看每个特征缺失值个数
df.isna().sum()
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 PassengerId 891 non-null int64
1 Survived 891 non-null int64
2 Pclass 891 non-null int64
3 Name 891 non-null object
4 Sex 891 non-null object
5 Age 714 non-null float64
6 SibSp 891 non-null int64
7 Parch 891 non-null int64
8 Ticket 891 non-null object
9 Fare 891 non-null float64
10 Cabin 204 non-null object
11 Embarked 889 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
查看指定列数据
# 查看Age, Cabin, Embarked列的数据
df[['Age','Cabin','Embarked']].head(6)
Age | Cabin | Embarked | |
---|---|---|---|
0 | 22.0 | NaN | S |
1 | 38.0 | C85 | C |
2 | 26.0 | NaN | S |
3 | 35.0 | C123 | S |
4 | 35.0 | NaN | S |
5 | NaN | NaN | Q |
对缺失值处理
# # 对缺失值进行处理汇总,面对缺失值三种处理方法:
# option 1: 去掉含有缺失值的样本(行)
# option 2:将含有缺失值的列(特征向量)去掉
# option 3:将缺失值用某些值填充(0,平均值,中值等)
# df.dropna() #删除缺失值
# df.fillna() #填充缺失值
# df.isna() #判断缺失值
# df.notna() #判断缺失值
df[df['Age']==None]=0
df[df['Age'].isna()] = 0
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 PassengerId 891 non-null int64
1 Survived 891 non-null int64
2 Pclass 891 non-null int64
3 Name 891 non-null object
4 Sex 891 non-null object
5 Age 891 non-null float64
6 SibSp 891 non-null int64
7 Parch 891 non-null int64
8 Ticket 891 non-null object
9 Fare 891 non-null float64
10 Cabin 362 non-null object
11 Embarked 889 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
# DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)
# axis:
# axis=0: 删除包含缺失值的行
# axis=1: 删除包含缺失值的列
# how: 与axis配合使用
# how=‘any’ :只要有缺失值出现,就删除该行货列
# how=‘all’: 所有的值都缺失,才删除行或列
# thresh: axis中至少有thresh个非缺失值,否则删除
# 比如 axis=0,thresh=10:标识如果该行中非缺失值的数量小于10,将删除改行
# subset: list
# 在哪些列中查看是否有缺失值
# inplace: 是否在原数据上操作。如果为真,返回None否则返回新的copy,去掉了缺失值
df.isna().sum()
PassengerId 0
Survived 0
Pclass 0
Name 0
Sex 0
Age 0
SibSp 0
Parch 0
Ticket 0
Fare 0
Cabin 529
Embarked 2
dtype: int64
#删除包含缺失值的行
# df1 = df.dropna(axis = 0)
# df1.isna().sum()
#指定列
df1 = df.dropna(subset=['Cabin', 'Embarked'])
df1.isna().sum()
df1.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 360 entries, 1 to 889
Data columns (total 12 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 PassengerId 360 non-null int64
1 Survived 360 non-null int64
2 Pclass 360 non-null int64
3 Name 360 non-null object
4 Sex 360 non-null object
5 Age 360 non-null float64
6 SibSp 360 non-null int64
7 Parch 360 non-null int64
8 Ticket 360 non-null object
9 Fare 360 non-null float64
10 Cabin 360 non-null object
11 Embarked 360 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 36.6+ KB
# DataFrame.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None)
# value scalar, dict, Series, or DataFrame
# dict 可以指定每一行或列用什么值填充
# method {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None
# 在列上操作
# ffill / pad 使用前一个值来填充缺失值
# backfill / bfill 使用后一个值来填充缺失值
# limit 填充的缺失值个数限制
df.isna().sum()
PassengerId 0
Survived 0
Pclass 0
Name 0
Sex 0
Age 0
SibSp 0
Parch 0
Ticket 0
Fare 0
Cabin 529
Embarked 2
dtype: int64
#用0代替所有的缺失值
df2 = df.fillna(value=0)
df2.isna().sum()
PassengerId 0
Survived 0
Pclass 0
Name 0
Sex 0
Age 0
SibSp 0
Parch 0
Ticket 0
Fare 0
Cabin 0
Embarked 0
dtype: int64
判断重复值
# 判断重复值
df3 = df[df.duplicated()] #没有参数,要全部一样才会判断重复值
df3
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
17 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0 | 0 |
19 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0 | 0 |
26 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0 | 0 |
28 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0 | 0 |
29 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0 | 0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
859 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0 | 0 |
863 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0 | 0 |
868 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0 | 0 |
878 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0 | 0 |
888 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0 | 0 |
176 rows × 12 columns
# 对重复值进行处理
df3 = df.drop_duplicates() #删除数据记录中所有列值相同的记录
df3
df4 = df.drop_duplicates(['Age','Parch']) #删除数据记录中指定列值相同的记录
df4
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.00 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.00 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.00 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.00 | 1 | 0 | 113803 | 53.1000 | C123 | S |
5 | 0 | 0 | 0 | 0 | 0 | 0.00 | 0 | 0 | 0 | 0.0000 | 0 | 0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
831 | 832 | 1 | 2 | Richards, Master. George Sibley | male | 0.83 | 1 | 1 | 29106 | 18.7500 | NaN | S |
843 | 844 | 0 | 3 | Lemberopolous, Mr. Peter L | male | 34.50 | 0 | 0 | 2683 | 6.4375 | NaN | C |
851 | 852 | 0 | 3 | Svensson, Mr. Johan | male | 74.00 | 0 | 0 | 347060 | 7.7750 | NaN | S |
871 | 872 | 1 | 1 | Beckwith, Mrs. Richard Leonard (Sallie Monypeny) | female | 47.00 | 1 | 1 | 11751 | 52.5542 | D35 | S |
879 | 880 | 1 | 1 | Potter, Mrs. Thomas Jr (Lily Alexenia Wilson) | female | 56.00 | 0 | 1 | 11767 | 83.1583 | C50 | C |
177 rows × 12 columns
df.to_csv('test_clear.csv')
分箱操作
#特征观察与处理
# 数值型特征一般可以直接用于模型的训练,但有时候为了模型的稳定性及鲁棒性会对连续变量进行离散化。文本型特征往往需要转换成数值型特征才能用于建模分析
#分箱操作:连续数据的离散化处理+
# 将连续变量Age平均分箱成5个年龄段,并分别用类别变量12345表示
df['AgeBand'] = pd.cut(df['Age'], 5 ,labels=[1,2,3,4,5])
df
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | AgeBand | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S | 2 |
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C | 3 |
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S | 2 |
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S | 3 |
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S | 3 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
886 | 887 | 0 | 2 | Montvila, Rev. Juozas | male | 27.0 | 0 | 0 | 211536 | 13.0000 | NaN | S | 2 |
887 | 888 | 1 | 1 | Graham, Miss. Margaret Edith | female | 19.0 | 0 | 0 | 112053 | 30.0000 | B42 | S | 2 |
888 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0000 | 0 | 0 | 1 |
889 | 890 | 1 | 1 | Behr, Mr. Karl Howell | male | 26.0 | 0 | 0 | 111369 | 30.0000 | C148 | C | 2 |
890 | 891 | 0 | 3 | Dooley, Mr. Patrick | male | 32.0 | 0 | 0 | 370376 | 7.7500 | NaN | Q | 2 |
891 rows × 13 columns
df
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | AgeBand | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S | 2 |
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C | 3 |
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S | 2 |
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S | 3 |
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S | 3 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
886 | 887 | 0 | 2 | Montvila, Rev. Juozas | male | 27.0 | 0 | 0 | 211536 | 13.0000 | NaN | S | 2 |
887 | 888 | 1 | 1 | Graham, Miss. Margaret Edith | female | 19.0 | 0 | 0 | 112053 | 30.0000 | B42 | S | 2 |
888 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0000 | 0 | 0 | 1 |
889 | 890 | 1 | 1 | Behr, Mr. Karl Howell | male | 26.0 | 0 | 0 | 111369 | 30.0000 | C148 | C | 2 |
890 | 891 | 0 | 3 | Dooley, Mr. Patrick | male | 32.0 | 0 | 0 | 370376 | 7.7500 | NaN | Q | 2 |
891 rows × 13 columns
# 将连续变量Age划分为(0,5] (5,15] (15,30] (30,50] (50,80]五个年龄段,并分别用类别变量12345表示
df['AgeBand1'] = pd.cut(df['Age'],[0,5,15,30,50,80],labels = [1,2,3,4,5])
df
#将连续变量Age按10% 30% 50 70% 90%五个年龄段,并用分类变量12345表示
# df['AgeBand2'] = pd.qcut(df['Age'],[0,0.1,0.3,0.5,0.7,0.9],labels = [1,2,3,4,5])
# df
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | AgeBand | AgeBand1 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S | 2 | 3 |
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C | 3 | 4 |
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S | 2 | 3 |
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S | 3 | 4 |
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S | 3 | 4 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
886 | 887 | 0 | 2 | Montvila, Rev. Juozas | male | 27.0 | 0 | 0 | 211536 | 13.0000 | NaN | S | 2 | 3 |
887 | 888 | 1 | 1 | Graham, Miss. Margaret Edith | female | 19.0 | 0 | 0 | 112053 | 30.0000 | B42 | S | 2 | 3 |
888 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0000 | 0 | 0 | 1 | NaN |
889 | 890 | 1 | 1 | Behr, Mr. Karl Howell | male | 26.0 | 0 | 0 | 111369 | 30.0000 | C148 | C | 2 | 3 |
890 | 891 | 0 | 3 | Dooley, Mr. Patrick | male | 32.0 | 0 | 0 | 370376 | 7.7500 | NaN | Q | 2 | 4 |
891 rows × 14 columns
# 对文本变量进行转换
# 查看类别文本变量名及种类
df['Sex'].value_counts() # value_counts()
male 453
female 261
0 177
Name: Sex, dtype: int64
df['Sex'].unique() #unique
df['Sex'].nunique() #文本变量名数量
3
# 将类别文本转换为12345
df['Sex_num'] = df['Sex'].replace(['male','female'],[1,2]) # replace替换类别文本一
df['Sex_num'].value_counts()
1 453
2 261
0 177
Name: Sex_num, dtype: int64
df['Sex_num'] = df['Sex'].map({'male': 1, 'female': 2}) # map替换类别文本二
df['Sex_num'].value_counts()
1.0 453
2.0 261
Name: Sex_num, dtype: int64
from sklearn.preprocessing import LabelEncoder #使用sklearn.preprocessing的LabelEncoder替换类别文本三
for feat in ['Cabin', 'Ticket']:
lbl = LabelEncoder()
label_dict = dict(zip(df[feat].unique(), range(df[feat].nunique())))
df[feat + "_labelEncode"] = df[feat].map(label_dict)
df[feat + "_labelEncode"] = lbl.fit_transform(df[feat].astype(str))
df.head(5)
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | AgeBand | AgeBand1 | Sex_num | Cabin_labelEncode | Ticket_labelEncode | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S | 2 | 3 | 1.0 | 135 | 409 |
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C | 3 | 4 | 2.0 | 74 | 472 |
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S | 2 | 3 | 2.0 | 135 | 533 |
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S | 3 | 4 | 2.0 | 50 | 41 |
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S | 3 | 4 | 1.0 | 135 | 374 |
# 将文本变量Sex, Cabin, Embarked用one-hot编码表示
#将类别文本转换为one-hot编码
for feat in ["Age", "Embarked"]: # OneHotEncoder
# x = pd.get_dummies(df["Age"] // 6)
# x = pd.get_dummies(pd.cut(df['Age'],5))
x = pd.get_dummies(df[feat], prefix=feat)
df = pd.concat([df, x], axis=1)
#df[feat] = pd.get_dummies(df[feat], prefix=feat)
df.head(5)
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | ... | Age_66.0 | Age_70.0 | Age_70.5 | Age_71.0 | Age_74.0 | Age_80.0 | Embarked_0 | Embarked_C | Embarked_Q | Embarked_S | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
5 rows × 110 columns
提取特征,正则表达式
# 从纯文本Name特征里提取出Titles的特征(所谓的Titles就是Mr,Miss,Mrs等)
# Series.str.extract(pat, flags=0, expand=True)
df['Title'] = df.Name.str.extract('([A-Za-z]+)\.', expand=False) # str.extract()函数和正则表达式,可以处理数字、符号和字母混合的字符串
df.head(5)
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | ... | Age_70.0 | Age_70.5 | Age_71.0 | Age_74.0 | Age_80.0 | Embarked_0 | Embarked_C | Embarked_Q | Embarked_S | Title | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | Mr |
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | Mrs |
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | Miss |
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | Mrs |
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | Mr |
5 rows × 111 columns
df.to_csv('test_fin.csv')
本章共四节,本章第2.1节主要内容,包括数据的清洗及特征处理,缺失值和重复值的处理,连续数据的离散化,转换类别文本,正则表达式。
标签:泰坦尼克号,non,891,df,Age,Kaggle,从零开始,int64,null 来源: https://blog.csdn.net/weixin_45058606/article/details/122003899