难题精刷:寻找两个正序数组的中位数
作者:互联网
2021-12-14 每日打卡:难题精刷
写在前面
“这些事儿在熟练之后,也许就像喝口水一样平淡,但却能给初学者带来巨大的快乐,我一直觉得,能否始终保持如初学者般的热情、专注,决定了在做某件事时能走多远,能做多好。” 该系列文章由python编写,所刷题目共三个来源:之前没做出来的 ;Leetcode中等,困难难度题目; 周赛题目;某个专题的经典题目,所有代码已AC。每日1-3道,随缘剖析,希望风雨无阻,作为勉励自己坚持刷题的记录。
4. 寻找两个正序数组的中位数
这道题可以转化成寻找两个有序数组中的第 k 小的数,其中 k 为 (m+n)/2 或 (m+n)/2+1。每次排除[k/2]个元素是因为当前元素排在第[k/2]个,而下标是[k/2]-1,这样其实每次可以排除的是前面的[k/2]个数。
但是这个题最难的部分其实是在边界的处理:
-
如果 A [ k / 2 − 1 ] {A}[k/2-1] A[k/2−1] 或者 B [ k / 2 − 1 ] {B}[k/2-1] B[k/2−1] 越界,那么我们可以选取对应数组中的最后一个元素。在这种情况下,我们必须根据排除数的个数减少 k 的值,而不能直接将 k 减去 k/2。
-
如果一个数组为空,说明该数组中的所有元素都被排除,我们可以直接返回另一个数组中第 k 小的元素。
-
如果 k=1,我们只要返回两个数组首元素的最小值即可。
class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
def getKthElement(k):
"""
- 主要思路:要找到第 k (k>1) 小的元素,那么就取 pivot1 = nums1[k/2-1] 和 pivot2 = nums2[k/2-1] 进行比较
- 这里的 "/" 表示整除
- nums1 中小于等于 pivot1 的元素有 nums1[0 .. k/2-2] 共计 k/2-1 个
- nums2 中小于等于 pivot2 的元素有 nums2[0 .. k/2-2] 共计 k/2-1 个
- 取 pivot = min(pivot1, pivot2),两个数组中小于等于 pivot 的元素共计不会超过 (k/2-1) + (k/2-1) <= k-2 个
- 这样 pivot 本身最大也只能是第 k-1 小的元素
- 如果 pivot = pivot1,那么 nums1[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums1 数组
- 如果 pivot = pivot2,那么 nums2[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums2 数组
- 由于我们 "删除" 了一些元素(这些元素都比第 k 小的元素要小),因此需要修改 k 的值,减去删除的数的个数
"""
index1, index2 = 0, 0
while True:
# 特殊情况
if index1 == m:
return nums2[index2 + k - 1]
if index2 == n:
return nums1[index1 + k - 1]
if k == 1:
return min(nums1[index1], nums2[index2])
# 正常情况
newIndex1 = min(index1 + k // 2 - 1, m - 1)
newIndex2 = min(index2 + k // 2 - 1, n - 1)
pivot1, pivot2 = nums1[newIndex1], nums2[newIndex2]
if pivot1 <= pivot2:
k -= newIndex1 - index1 + 1
index1 = newIndex1 + 1
else:
k -= newIndex2 - index2 + 1
index2 = newIndex2 + 1
m, n = len(nums1), len(nums2)
totalLength = m + n
if totalLength % 2 == 1:
return getKthElement((totalLength + 1) // 2)
else:
return (getKthElement(totalLength // 2) + getKthElement(totalLength // 2 + 1)) / 2
标签:pivot2,pivot1,正序,元素,中位数,精刷,数组,nums1,nums2 来源: https://blog.csdn.net/Can__er/article/details/121955882