其他分享
首页 > 其他分享> > Hugging Face Course-Introduction学习小记 (part1)

Hugging Face Course-Introduction学习小记 (part1)

作者:互联网

在这里插入图片描述

1.Transformer models

首先介绍了 - what is NLP

然后介绍了transformer模型的架构和它的衍生模型

encoder model

编码器模型仅使用 Transformer 模型的编码器。在每个阶段,注意力层都可以访问初始句子中的所有单词。这些模型通常具有“双向”注意力的特征,通常称为自动编码模型。

这些模型的预训练通常围绕着以某种方式破坏给定的句子(例如,通过屏蔽其中的随机单词)并让模型找到或重建初始句子。

编码器模型最适合需要理解完整句子的任务,例如句子分类、命名实体识别(以及更一般的单词分类)和提取式问答。

一些主要的encoder模型:

decoder model

解码器模型仅使用 Transformer 模型的解码器。在每个阶段,对于给定的单词,注意力层只能访问句子中位于它之前的单词。这些模型通常称为自回归模型。

解码器模型的预训练通常围绕预测句子中的下一个单词。

这些模型最适合涉及文本生成的任务。

一些主要的decoder模型:

seq2seq model

编码器-解码器模型(也称为序列到序列模型)使用 Transformer 架构的两个部分。在每个阶段,编码器的注意力层可以访问初始句子中的所有单词,而解码器的注意力层只能访问输入中位于给定单词之前的单词。

这些模型的预训练可以使用编码器或解码器模型的目标来完成,但通常涉及更复杂的事情。例如,T5是通过用单个掩码特殊词替换随机文本跨度(可以包含多个词)来预训练的,然后目标是预测这个掩码词替换的文本。

序列到序列模型最适合围绕根据给定输入生成新句子的任务,例如摘要、翻译或生成式问答。

一些主要的seq2seq模型:

总结:
在这里插入图片描述

2.Using Transformers

首先介绍了transformer库的一些特点:

然后以一些完整的例子来介绍:

from transformers import pipeline

classifier = pipeline("sentiment-analysis")
classifier(
    [
        "I've been waiting for a HuggingFace course my whole life.",
        "I hate this so much!",
    ]
)

输出:

[{'label': 'POSITIVE', 'score': 0.9598047137260437},
 {'label': 'NEGATIVE', 'score': 0.9994558095932007}]

Preprocessing with a tokenizer

正如我们在第 1 章中看到的,这个pipeline将三个步骤组合在一起:预处理、通过模型传递输入和后处理:

在这里插入图片描述
与其他神经网络一样,Transformer 模型不能直接处理原始文本,因此我们pipeline的第一步是将文本输入转换为模型可以理解的数字。为此,我们使用了一个tokenizer,它将负责:

所有这些预处理都需要以与模型预训练时完全相同的方式完成,因此我们首先需要从Model Hub下载该信息。为此,我们使用AutoTokenizer类及其from_pretrained()方法。

from transformers import AutoTokenizer

checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)

一旦我们有了tokenizer,我们就可以直接将我们的句子传递给它,我们将得到一个准备好提供给我们模型的字典!唯一要做的就是将输入 ID 列表转换为张量。

raw_inputs = [
    "I've been waiting for a HuggingFace course my whole life.",
    "I hate this so much!",
]
inputs = tokenizer(raw_inputs, padding=True, truncation=True, return_tensors="pt") #pt代表pytorch
print(inputs)

输出:

{
    'input_ids': tensor([
        [  101,  1045,  1005,  2310,  2042,  3403,  2005,  1037, 17662, 12172, 2607,  2026,  2878,  2166,  1012,   102],
        [  101,  1045,  5223,  2023,  2061,  2172,   999,   102,     0,     0,     0,     0,     0,     0,     0,     0]
    ]), 
    'attention_mask': tensor([
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
    ])
}

然后载入模型:

from transformers import AutoModel

checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"
model = AutoModel.from_pretrained(checkpoint)

The vector output by the Transformer module is usually large. It generally has three dimensions:

outputs = model(**inputs)
print(outputs.last_hidden_state.shape)

输出

torch.Size([2, 16, 768])

Model heads: 从数字中寻找意义

The model heads将隐藏状态的高维向量作为输入,并将它们投影到不同的维度上。它们通常由一个或几个线性层组成:
在这里插入图片描述

Transformer 模型的输出直接送到模型头进行处理。

在此图中,模型由其嵌入层和后续层表示。嵌入层将标记化输入中的每个输入 ID 转换为表示相关标记的向量。随后的层使用注意力机制操纵这些向量以产生句子的最终表示。

对于我们的示例,我们需要一个带有序列分类头的模型(能够将句子分类为正面或负面)。所以,我们实际上不会使用这个AutoModel类,而是AutoModelForSequenceClassification:

from transformers import AutoModelForSequenceClassification

checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"
model = AutoModelForSequenceClassification.from_pretrained(checkpoint)
outputs = model(**inputs)
print(outputs.logits.shape)

输出维度

torch.Size([2, 2])

Postprocessing the output 将输出处理为我们需要的类型

我们从模型中获得的作为输出的值本身并不一定有意义。让我们来看看:

print(outputs.logits)

输出:

tensor([[-1.5607,  1.6123],
        [ 4.1692, -3.3464]], grad_fn=<AddmmBackward>)

我们的模型预测[-1.5607, 1.6123]了第一句话和[ 4.1692, -3.3464]第二句话。这些不是概率,而是一些实数,即模型最后一层输出的原始非标准化分数。要转换为概率,它们需要经过一个SoftMax层(所有

标签:inputs,Introduction,text,模型,Hugging,单词,part1,model,句子
来源: https://blog.csdn.net/Raki_J/article/details/121947545