中高级Android大厂面试秘籍,为你保驾护航金三银四,直通大厂(上
作者:互联网
分别执行A onPause()、B onCreate()、B onStart()、B onResume()、A onStop()方法。
关闭B Activity
分别执行B onPause()、A onRestart()、A onStart()、A onResume()、B onStop()、B onDestroy()方法。
横竖屏切换A Activity
清单文件中不设置android:configChanges属性时,先销毁onPause()、onStop()、onDestroy()再重新创建onCreate()、onStart()、onResume()方法,
设置orientation|screenSize(一定要同时出现)属性值时,不走生命周期方法,只会执行onConfigurationChanged()方法。
Activity之间的切换
可以看出onPause()、onStop()这两个方法比较特殊,切换的时候onPause()方法不要加入太多耗时操作否则会影响体验。
app启动的过程有两种情况
第一种是从桌面launcher上点击相应的应用图标
第二种是在activity中通过调用startActivity来启动一个新的activity。
我们创建一个新的项目,默认的根activity都是MainActivity,而所有的activity都是保存在堆栈中的,我们启动一个新的activity就会放在上一个activity上面,而我们从桌面点击应用图标的时候,由于launcher本身也是一个应用,当我们点击图标的时候,系统就会调用startActivitySately(),一般情况下,我们所启动的activity的相关信息都会保存在intent中,比如action,category等等。我们在安装这个应用的时候,系统也会启动一个PackaManagerService的管理服务,这个管理服务会对AndroidManifest.xml文件进行解析,从而得到应用程序中的相关信息,比如service,activity,Broadcast等等,然后获得相关组件的信息。当我们点击应用图标的时候,就会调用startActivitySately()方法,而这个方法内部则是调用startActivty(),而startActivity()方法最终还是会调用startActivityForResult()这个方法。而在startActivityForResult()这个方法。因为startActivityForResult()方法是有返回结果的,所以系统就直接给一个-1,就表示不需要结果返回了。而startActivityForResult()这个方法实际是通过Instrumentation类中的execStartActivity()方法来启动activity,Instrumentation这个类主要作用就是监控程序和系统之间的交互。而在这个execStartActivity()方法中会获取ActivityManagerService的代理对象,通过这个代理对象进行启动activity。启动会就会调用一个checkStartActivityResult()方法,如果说没有在配置清单中配置有这个组件,就会在这个方法中抛出异常了。当然最后是调用的是Application.scheduleLaunchActivity()进行启动activity,而这个方法中通过获取得到一个ActivityClientRecord对象,而这个ActivityClientRecord通过handler来进行消息的发送,系统内部会将每一个activity组件使用ActivityClientRecord对象来进行描述,而ActivityClientRecord对象中保存有一个LoaderApk对象,通过这个对象调用handleLaunchActivity来启动activity组件,而页面的生命周期方法也就是在这个方法中进行调用。
Intent
借助类的静态变量
借助全局变量/Application
借助外部工具
借助SharedPreference
使用Android数据库SQLite
赤裸裸的使用File
Android剪切板
借助Service
4.横竖屏切换的时候,Activity 各种情况下的生命周期
分两种情况:
1.不设置Activity的android:configChanges,或设置Activity的android:configChanges=“orientation”,或设置Activity的android:configChanges=“orientation|keyboardHidden”,切屏会重新调用各个生命周期,切横屏时会执行一次,切竖屏时会执行一次。
横竖屏切换造成 activity 的生命周期
onPause()-onSaveInstanceState()-onStop()-onDestroy()-onCreat()-onStart()-onRestoreInstanceState()-onResume()即会导致 activity 的销毁和重建 。
2.配置 android:configChanges=“orientation|keyboardHidden|screenSize”,才不会销毁 activity,且只调用 onConfigurationChanged方法。
onSaveInstanceState() 与onRestoreIntanceState() 资源相关的系统配置发生改变或者资源不足时(例如屏幕旋转),当前 Activity 会销毁,并且在 onStop 之前回调 onSaveInstanceState 保存数据,在重新创建 Activity 的时候在onStart 之后回调 onRestoreInstanceState。其中 Bundle 数据会传到 onCreate(不一定有数据)和 onRestoreInstanceState(一定有数据)。
用户或者程序员主动去销毁一个 Activity 的时候不会回调(如代码中 finish()或用户按下 back,不会回调),其他情况都会调用,来保存界面信息。
5.两个Activity 之间跳转时必然会执行的是哪几个方法?
a. 正常情况下 Activity A 跳转到 Activity B 时:
A调用 onCreate() 方法 -> onStart() 方法 -> onResume() 方法,此时 A 前台可见。当 A 跳转到 B 时,A 调用 onPause() 方法,然后调用新的 Activity B 中的 onCreate() 方法 -> onStart() 方法 -> onResume() 方法。最后 A 再调用onStop()方法。
b. 当 Activity B 为透明主题时:
除了最后 Activity A 不调用 onStop() 方法之外,其它都和 a 中的一样。
当 Activity 在异常情况( 系统内存不足或者系统配置发生了改变等 )被销毁重建后, 在销毁的时候 Activity 会调用 onSaveInstanceState() 方法用于保存 Activity 相关的状态和数据,然后在重建后的 Activity 的中我们可以通过 onCreate() 或者 onRestoreInstanceState() 方法恢复数据,这里我们需要注意的是如果通过 onCreate() 方法恢复,那么得先判断它的 intent 参数 是否为空,如果在 onRestoreInstanceState() 方法恢复就不会,因为只要 onRestoreInstanceState() 方法被调用就说明一定有数据,不会为空。Google 推荐使用 onRestoreInstanceState() 方法。
主要有onAttach()、onCreate()、onCreateView()、onActivityCreated()、onstart()、onResume()、onPause()、onStop()、onDestroyView()、onDestroy()、onDetach()等11个方法。
切换到该Fragment
分别执行onAttach()、onCreate()、onCreateView()、onActivityCreated()、onstart()、onResume()方法。
锁屏
分别执行onPause()、onStop()方法。
亮屏
分别执行onstart()、onResume()方法。
覆盖切换到其他Fragment
分别执行onPause()、onStop()、onDestroyView()方法。
从其他Fragment回到之前Fragment
分别执行onCreateView()、onActivityCreated()、onstart()、onResume()方法。
service 启动方式有两种
一种是通过startService()方式进行启动
另一种是通过bindService()方式进行启动。
不同的启动方式他们的生命周期是不一样.
通过startService()这种方式启动的service
生命周期是这样:
调用startService() --> onCreate()–> onStartConmon()–> onDestroy()。
这种方式启动的话,需要注意一下几个问题
第一:当我们通过startService被调用以后,多次在调用startService(),onCreate()方法也只会被调用一次,而onStartConmon()会被多次调用,当我们调用stopService()的时候,onDestroy()就会被调用,从而销毁服务。
第二:当我们通过startService启动时候,通过intent传值,在onStartConmon()方法中获取值的时候,一定要先判断intent是否为null。
通过bindService()方式进行绑定,这种方式绑定service
生命周期:
bindService–>onCreate()–>onBind()–>unBind()–>onDestroy()
bindservice 这种方式进行启动service好处是更加便利activity中操作service,如果要在activity中调用,在需要在activity获取ServiceConnection对象,通过ServiceConnection来获取service中内部类的类对象,然后通过这个类对象就可以调用类中的方法,当然这个类需要继承Binder对象
1.通过 broadcast:通过广播发送消息到 activitry
2.通过 Binder:通过与 activity 进行绑定
(1)添加一个继承 Binder 的内部类,并添加相应的逻辑方法。
(2)重写 Service 的 onBind 方法,返回我们刚刚定义的那个内部类实例。
(3)Activity 中创建一个 ServiceConnection 的匿名内部类,并且 重 写 里 面 的 onServiceConnected 方 法 和onServiceDisconnected 方法,这两个方法分别会在活动与服务成功绑定以及解除绑定的时候调用(在onServiceConnected方法中,我们可以得到一个刚才那个 service 的 binder 对象,通过对这个 binder 对象进行向下转型,得到我们那个自定义的 Binder 实例,有了这个实例,做可以调用这个实例里面的具体方法进行需要的操作了)。
10.Android启动Service的两种方式是什么? 它们的适用情况是什么?
如果后台服务开始后基本可以独立运行的话,可以用startService。音乐播放器就可以这样用。它们会一直运行直到你调用 stopSelf或者stopService。你可以通过发送Intent或者接收Intent来与正在运行的后台服务通信,但大部分时间,你只是启动服务并让它独立运行。如果你需要与后台服务通过一个持续的连接来比较频繁地通信,建议使用bind()。比如你需要定位服务不停地把更新后的地理位置传给UI。Binder比Intent开发起来复杂一些,但如果真的需要,你也只能使用它。
startService:
生命周期与调用者不同。启动后若调用者未调用stopService而直接退出,Service仍会运行。
bindService:
生命周期与调用者绑定,调用者一旦退出,Service就会调用unBind->onDestroy
此处延伸:什么情况下用动态注册
Broadcast广播,注册方式主要有两种.
第一种是静态注册,也可成为常驻型广播,这种广播需要在Androidmanifest.xml中进行注册,这中方式注册的广播,不受页面生命周期的影响,即使退出了页面,也可以收到广播这种广播一般用于想开机自启动啊等等,由于这种注册的方式的广播是常驻型广播,所以会占用CPU的资源。
第二种是动态注册,而动态注册的话,是在代码中注册的,这种注册方式也叫非常驻型广播,受到生命周期的影响,退出页面后,就不会收到广播,我们通常运用在更新UI方面。这种注册方式优先级较高。最后需要解绑,否会会内存泄露
广播是分为有序广播和无序广播。
Context是一个抽象基类。在翻译为上下文,也可以理解为环境,是提供一些程序的运行环境基础信息。Context下有两个子类,ContextWrapper是上下文功能的封装类,而ContextImpl则是上下文功能的实现类。而ContextWrapper又有三个直接的子类, ContextThemeWrapper、Service和Application。其中,ContextThemeWrapper是一个带主题的封装类,而它有一个直接子类就是Activity,所以Activity和Service以及Application的Context是不一样的,只有Activity需要主题,Service不需要主题。
Context一共有三种类型,分别是Application、Activity和Service。这三个类虽然分别各种承担着不同的作用,但它们都属于Context的一种,而它们具体Context的功能则是由ContextImpl类去实现的,因此在绝大多数场景下,Activity、Service和Application这三种类型的Context都是可以通用的。
不过有几种场景比较特殊,比如启动Activity,还有弹出Dialog。出于安全原因的考虑,Android是不允许Activity或Dialog凭空出现的,一个Activity的启动必须要建立在另一个Activity的基础之上,也就是以此形成的返回栈。而Dialog则必须在一个Activity上面弹出(除非是System Alert类型的Dialog),因此在这种场景下,我们只能使用Activity类型的Context,否则将会出错。
getApplicationContext()和getApplication()方法得到的对象都是同一个application对象,只是对象的类型不一样。
Context数量 = Activity数量 + Service数量 + 1 (1为Application)
Service生命周期的各个回调和其他的应用组件一样,是跑在主线程中,会影响
到你的UI操作或者阻塞主线程中的其他事情
AsyncTask内部也是Handler机制来完成的,只不过Android提供了执行框架来提供线程池来执行相应地任务,因为线程池的大小问题,所以AsyncTask只应该用来执行耗时时间较短的任务,比如HTTP请求,大规模的下载和数据库的更改不适用于AsyncTask,因为会导致线程池堵塞,没有线程来执行其他的任务,导致的情形是会发生,AsyncTask根本执行不了的问题。
由于篇幅有限,只能分享部分面试题,更多面试题及答案可以我的【Github】阅读下载哦~无偿分享给大家,算是一个感恩回馈吧
建造者模式:
观察者模式:
代理模式:
门面模式:
单例模式:
生产者消费者模式:
这个通过对比来描述,比如面向对象和面向过程的对比,针对这两种思想的对比,还可以举个开发中的例子,比如播放器的实现,面向过程的实现方式就是将播放视频的这个功能分解成多个过程,比如,加载视频地址,获取视频信息,初始化解码器,选择合适的解码器进行解码,读取解码后的帧进行视频格式转换和音频重采样,然后读取帧进行播放,这是一个完整的过程,这个过程中不涉及类的概念,而面向对象最大的特点就是类,封装继承和多态是核心,同样的以播放器为例,一面向对象的方式来实现,将会针对每一个功能封装出一个对象,每一个功能对应一个对象,由这个对象来完成对应的功能,并且遵循单一职责原则,一个对象只做它相关的事情
##16.说下java中的线程创建方式,线程池的工作原理。
Java中有三种创建线程的方式,或者说四种
1.继承Thread类实现多线程
2.实现Runnable接口
3.实现Callable接口
4.通过线程池
线程池可以减少创建和销毁线程的次数,从而减少系统资源的消耗,当一个任务提交到线程池时.
a. 首先判断核心线程池中的线程是否已经满了,如果没满,则创建一个核心线程执行任务,否则进入下一步.
b. 判断工作队列是否已满,没有满则加入工作队列,否则执行下一步.
c. 判断线程数是否达到了最大值,如果不是,则创建非核心线程执行任务,否则执行饱和策略,默认抛出异常.
Handler,Message,looper和MessageQueue构成了安卓的消息机制,handler创建后可以通过sendMessage将消息加入消息队列,然后looper不断的将消息从MessageQueue中取出来,回调到Hander的handleMessage方法,从而实现线程的通信。
从两种情况来说,第一在UI线程创建Handler,此时我们不需要手动开启looper,因为在应用启动时,在ActivityThread的main方法中就创建了一个当前主线程的looper,并开启了消息队列,消息队列是一个无限循环,为什么无限循环不会ANR?因为可以说,应用的整个生命周期就是运行在这个消息循环中的,安卓是由事件驱动的,Looper.loop不断的接收处理事件,每一个点击触摸或者Activity每一个生命周期都是在Looper.loop的控制之下的,looper.loop一旦结束,应用程序的生命周期也就结束了。
我们可以想想什么情况下会发生ANR?
第一,事件没有得到处理
第二,事件正在处理,但是没有及时完成,而对事件进行处理的就是looper,所以只能说事件的处理如果阻塞会导致ANR,而不能说looper的无限循环会ANR
另一种情况就是在子线程创建Handler,此时由于这个线程中没有默认开启的消息队列,所以我们需要手动调用looper.prepare(),并通过looper.loop开启消息
主线程Looper从消息队列读取消息,当读完所有消息时,主线程阻塞。子线程往消息队列发送消息,并且往管道文件写数据,主线程即被唤醒,从管道文件读取数据,主线程被唤醒只是为了读取消息,当消息读取完毕,再次睡眠。因此loop的循环并不会对CPU性能有过多的消耗。
1.非静态内部类的静态实例
非静态内部类会持有外部类的引用,如果非静态内部类的实例是静态的,就会长期的维持着外部类的引用,组织被系统回收,解决办法是使用静态内部类
2.多线程相关的匿名内部类和非静态内部类
匿名内部类同样会持有外部类的引用,如果在线程中执行耗时操作就有可能发生内存泄漏,导致外部类无法被回收,直到耗时任务结束,解决办法是在页面退出时结束线程中的任务
3.Handler内存泄漏
Handler导致的内存泄漏也可以被归纳为非静态内部类导致的,Handler内部message是被存储在MessageQueue中的,有些message不能马上被处理,存在的时间会很长,导致handler无法被回收,如果handler是非静态的,就会导致它的外部类无法被回收,
解决办法是
1.使用静态handler,外部类引用使用弱引用处理
2.在退出页面时移除消息队列中的消息
4.Context导致内存泄漏
根据场景确定使用Activity的Context还是Application的Context,因为二者生命周期不同,对于不必须使用Activity的Context的场景(Dialog),一律采用Application的Context,单例模式是最常见的发生此泄漏的场景,比如传入一个Activity的Context被静态类引用,导致无法回收
5.静态View导致泄漏
使用静态View可以避免每次启动Activity都去读取并渲染View,但是静态View会持有Activity的引用,导致无法回收
解决办法是在Activity销毁的时候将静态View设置为null(View一旦被加载到界面中将会持有一个Context对象的引用,在这个例子中,这个context对象是我们的Activity,声明一个静态变量引用这个View,也就引用了activity)
6.WebView导致的内存泄漏
WebView只要使用一次,内存就不会被释放,所以WebView都存在内存泄漏的问题,通常的解决办法是为WebView单开一个进程,使用AIDL进行通信,根据业务需求在合适的时机释放掉
7.资源对象未关闭导致
如Cursor,File等,内部往往都使用了缓冲,会造成内存泄漏,一定要确保关闭它并将引用置为null
8.集合中的对象未清理
集合用于保存对象,如果集合越来越大,不进行合理的清理,尤其是入股集合是静态的
9.Bitmap导致内存泄漏
bitmap是比较占内存的,所以一定要在不使用的时候及时进行清理,避免静态变量持有大的bitmap对象
10.监听器未关闭
很多需要register和unregister的系统服务要在合适的时候进行unregister,手动添加的listener也需要及时移除
《Android学习笔记总结+最新移动架构视频+大厂安卓面试真题+项目实战源码讲义》
【docs.qq.com/doc/DSkNLaERkbnFoS0ZF】 完整内容开源分享
1.使用更加轻量的数据结构:
如使用ArrayMap/SparseArray替代HashMap,HashMap更耗内存,因为它需要额外的实例对象来记录Mapping操作,SparseArray更加高效,因为它避免了Key Value的自动装箱,和装箱后的解箱操作
2.枚举的使用
可以用静态常量或者注解@IntDef替代
3.Bitmap优化:
a.尺寸压缩:
通过InSampleSize设置合适的缩放
b.颜色质量:
设置合适的format,ARGB_6666/RBG_545/ARGB_4444/ALPHA_6,存在很大差异.
c.inBitmap:
使用inBitmap属性可以告知Bitmap解码器去尝试使用已经存在的内存区域,新解码的Bitmap会尝试去使用之前那张Bitmap在Heap中所占据的pixel data内存区域,而不是去问内存重新申请一块区域来存放Bitmap。利用这种特性,即使是上千张的图片,也只会仅仅只需要占用屏幕所能够显示的图片数量的内存大小,但复用存在一些限制,具体体现在:在Android 4.4之前只能重用相同大小的Bitmap的内存,而Android 4.4及以后版本则只要后来的Bitmap比之前的小即可。使用inBitmap参数前,每创建一个Bitmap对象都会分配一块内存供其使用,而使用了inBitmap参数后,多个Bitmap可以复用一块内存,这样可以提高性能
d.StringBuilder替代String: 在有些时候,代码中会需要使用到大量的字符串拼接的操作,这种时候有必要考虑使用StringBuilder来替代频繁的“+”
e.避免在类似onDraw这样的方法中创建对象,因为它会迅速占用大量内存,引起频繁的GC`甚至内存抖动
f.减少内存泄漏也是一种避免OOM的方法
(1)按下home键之后,然后切换回来,会调用onRestart()。
(2)从本Activity跳转到另一个Activity之后,按back键返回原来Activity,会调用onRestart();
(3)从本Activity切换到其他的应用,然后再从其他应用切换回来,会调用onRestart();
a: Service设置成START_STICKY kill后会被重启(等待5秒左右),重传Intent,保持与重启前一样
b: 通过 startForeground将进程设置为前台进程, 做前台服务,优先级和前台应用一个级别,除非在系统内存非常缺,否则此进程不会被kill
c: 双进程Service: 让2个进程互相保护对方,其中一个Service被清理后,另外没被清理的进程可以立即重启进程
d: 用C编写守护进程(即子进程) : Android系统中当前进程(Process)fork出来的子进程,被系统认为是两个不同的进程。当父进程被杀死的时候,子进程仍然可以存活,并不受影响(Android5.0以上的版本不可行)联系厂商,加入白名单
e.锁屏状态下,开启一个一像素Activity
23.说下冷启动与热启动是什么,区别,如何优化,使用场景等。
app冷启动:
当应用启动时,后台没有该应用的进程,这时系统会重新创建一个新的进程分配给该应用, 这个启动方式就叫做冷启动(后台不存在该应用进程)。冷启动因为系统会重新创建一个新的进程分配给它,所以会先创建和初始化Application类,再创建和初始化MainActivity类(包括一系列的测量、布局、绘制),最后显示在界面上。
app热启动:
当应用已经被打开, 但是被按下返回键、Home键等按键时回到桌面或者是其他程序的时候,再重新打开该app时, 这个方式叫做热启动(后台已经存在该应用进程)。
热启动因为会从已有的进程中来启动,所以热启动就不会走Application这步了,而是直接走MainActivity(包括一系列的测量、布局、绘制),所以热启动的过程只需要创建和初始化一个MainActivity就行了,而不必创建和初始化Application
冷启动的流程
当点击app的启动图标时,安卓系统会从Zygote进程中fork创建出一个新的进程分配给该应用,之后会依次创建和初始化Application类、创建MainActivity类、加载主题样式Theme中的windowBackground等属性设置给MainActivity以及配置Activity层级上的一些属性、再inflate布局、当onCreate/onStart/onResume方法都走完了后最后才进行contentView的measure/layout/draw显示在界面上
冷启动的生命周期简要流程:
Application构造方法 –>attachBaseContext()–>onCreate –>Activity构造方法 –>onCreate() –> 配置主体中的背景等操作 –>onStart()–> onResume()–> 测量、布局、绘制显示
冷启动的优化主要是视觉上的优化,解决白屏问题,提高用户体验,所以通过上面冷启动的过程。能做的优化如下:
1、减少onCreate()方法的工作量
2、不要让Application参与业务的操作
3、不要在Application进行耗时操作
4、不要以静态变量的方式在Application保存数据
5、减少布局的复杂度和层级
6、减少主线程耗时
原因在于加载主题样式Theme中的windowBackground等属性设置给MainActivity发生在inflate布局当onCreate/onStart/onResume方法之前,而windowBackground背景被设置成了白色或者黑色,所以我们进入app的第一个界面的时候会造成先白屏或黑屏一下再进入界面。解决思路如下
1.给他设置windowBackground背景跟启动页的背景相同,如果你的启动页是张图片那么可以直接给windowBackground这个属性设置该图片那么就不会有一闪的效果了
标签:调用,activity,线程,大厂,Activity,Android,金三银,方法,内存 来源: https://blog.csdn.net/m0_65146105/article/details/121889950