yolo和voc格式之数据集标注和划分
作者:互联网
Contents
1. LabelImg Install
打开Anaconda终端,输入即可安装完成:
pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple
1) dataset file
准备一个** data **的根目录文件夹,文件夹格式如下:
data-
--images #装有你待标注图像的子文件夹
--labels #等会需要保存标注txt文件的子文件夹
--class.txt #里面保存有你的标注类别
class.txt格式如下,这是代表有四类文件:
red
gray
blue
other
2) Implement
使用anaconda终端 ,依次输入:
cd [data文件夹所在路径]
labelimg images class.txt #即labelimg [待标注图像路径] [类别txt文件]
即可用labelimg标注工具打开待标注图像
3) labelimg Introduction
Open Dir
:待标注图片数据的路径文件夹,即选择images
文件夹
Change Save Dir
:保存类别标签的路径文件夹,即选择labels
文件夹
YOLO
:标注的标签保存成YOLO
格式,在鼠标点一下就变成PascalVOC
,即此时就会把标注的标签变成VOC
格式
4) Configuration
如下图,选中这个选项即可:
Auto Save mode
:当你切换到下一张图片时,就会自动把上一张标注的图片标签自动保存下来,这样就不用每标注一样图片都按Ctrl+S
保存一下了
Display Labels
:标注好图片之后,会把框和标签都显示出来
Advanced Mode
:这样标注的十字架就会一直悬浮在窗口,不用每次标完一个目标,再按一次W快捷键,调出标注的十字架。
5) Hot key
W
:调出标注的十字架,开始标注
A
:切换到上一张图片
D
:切换到下一张图片
Ctrl+S
:保存标注好的标签
del
:删除标注的矩形框
Ctrl+鼠标滚轮
:按住Ctrl,然后滚动鼠标滚轮,可以调整标注图片的显示大小
Ctrl+u
:选择要标注图片的文件夹
Ctrl+r
:选择标注好的label标签存放的文件夹
↑→↓←
:移动标注的矩形框的位置
代码如下(示例):
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
2. Format Conversion Code
YOLO转化为VOC格式完整代码如下,只需要在终端改成自己的路径即可:
import os
import cv2
import json
from tqdm import tqdm
from sklearn.model_selection import train_test_split
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--root_dir', default='./data', type=str,
help="root path of images and labels, include ./images and ./labels and classes.txt")
parser.add_argument('--save_path', type=str, default='./test.json',
help="if not split the dataset, give a path to a json file")
parser.add_argument('--random_split', action='store_true', help="random split the dataset, default ratio is 8:1:1")
parser.add_argument('--split_by_file', action='store_true',
help="define how to split the dataset, include ./train.txt ./val.txt ./test.txt ")
arg = parser.parse_args()
def train_test_val_split_random(img_paths, ratio_train=0.8, ratio_test=0.1, ratio_val=0.1):
# 这里可以修改数据集划分的比例。
assert int(ratio_train + ratio_test + ratio_val) == 1
train_img, middle_img = train_test_split(img_paths, test_size=1 - ratio_train, random_state=233)
ratio = ratio_val / (1 - ratio_train)
val_img, test_img = train_test_split(middle_img, test_size=ratio, random_state=233)
print("NUMS of train:val:test = {}:{}:{}".format(len(train_img), len(val_img), len(test_img)))
return train_img, val_img, test_img
def train_test_val_split_by_files(img_paths, root_dir):
# 根据文件 train.txt, val.txt, test.txt(里面写的都是对应集合的图片名字) 来定义训练集、验证集和测试集
phases = ['train', 'val', 'test']
img_split = []
for p in phases:
define_path = os.path.join(root_dir, f'{p}.txt')
print(f'Read {p} dataset definition from {define_path}')
assert os.path.exists(define_path)
with open(define_path, 'r') as f:
img_paths = f.readlines()
# img_paths = [os.path.split(img_path.strip())[1] for img_path in img_paths] # NOTE 取消这句备注可以读取绝对地址。
img_split.append(img_paths)
return img_split[0], img_split[1], img_split[2]
def yolo2coco(arg):
root_path = arg.root_dir
print("Loading data from ", root_path)
assert os.path.exists(root_path)
originLabelsDir = os.path.join(root_path, 'labels')
originImagesDir = os.path.join(root_path, 'images')
with open(os.path.join(root_path, 'classes.txt')) as f:
classes = f.read().strip().split()
# images dir name
indexes = os.listdir(originImagesDir)
if arg.random_split or arg.split_by_file:
# 用于保存所有数据的图片信息和标注信息
train_dataset = {'categories': [], 'annotations': [], 'images': []}
val_dataset = {'categories': [], 'annotations': [], 'images': []}
test_dataset = {'categories': [], 'annotations': [], 'images': []}
# 建立类别标签和数字id的对应关系, 类别id从0开始。
for i, cls in enumerate(classes, 0):
train_dataset['categories'].append({'id': i, 'name': cls, 'supercategory': 'mark'})
val_dataset['categories'].append({'id': i, 'name': cls, 'supercategory': 'mark'})
test_dataset['categories'].append({'id': i, 'name': cls, 'supercategory': 'mark'})
if arg.random_split:
print("spliting mode: random split")
train_img, val_img, test_img = train_test_val_split_random(indexes, 0.8, 0.1, 0.1)
elif arg.split_by_file:
print("spliting mode: split by files")
train_img, val_img, test_img = train_test_val_split_by_files(indexes, root_path)
else:
dataset = {'categories': [], 'annotations': [], 'images': []}
for i, cls in enumerate(classes, 0):
dataset['categories'].append({'id': i, 'name': cls, 'supercategory': 'mark'})
# 标注的id
ann_id_cnt = 0
for k, index in enumerate(tqdm(indexes)):
# 支持 png jpg 格式的图片。
txtFile = index.replace('images', 'txt').replace('.jpg', '.txt').replace('.png', '.txt')
# 读取图像的宽和高
im = cv2.imread(os.path.join(root_path, 'images/') + index)
height, width, _ = im.shape
if arg.random_split or arg.split_by_file:
# 切换dataset的引用对象,从而划分数据集
if index in train_img:
dataset = train_dataset
elif index in val_img:
dataset = val_dataset
elif index in test_img:
dataset = test_dataset
# 添加图像的信息
dataset['images'].append({'file_name': index,
'id': k,
'width': width,
'height': height})
if not os.path.exists(os.path.join(originLabelsDir, txtFile)):
# 如没标签,跳过,只保留图片信息。
continue
with open(os.path.join(originLabelsDir, txtFile), 'r') as fr:
labelList = fr.readlines()
for label in labelList:
label = label.strip().split()
x = float(label[1])
y = float(label[2])
w = float(label[3])
h = float(label[4])
# convert x,y,w,h to x1,y1,x2,y2
H, W, _ = im.shape
x1 = (x - w / 2) * W
y1 = (y - h / 2) * H
x2 = (x + w / 2) * W
y2 = (y + h / 2) * H
# 标签序号从0开始计算, coco2017数据集标号混乱,不管它了。
cls_id = int(label[0])
width = max(0, x2 - x1)
height = max(0, y2 - y1)
dataset['annotations'].append({
'area': width * height,
'bbox': [x1, y1, width, height],
'category_id': cls_id,
'id': ann_id_cnt,
'image_id': k,
'iscrowd': 0,
# mask, 矩形是从左上角点按顺时针的四个顶点
'segmentation': [[x1, y1, x2, y1, x2, y2, x1, y2]]
})
ann_id_cnt += 1
# 保存结果
folder = os.path.join(root_path, 'annotations')
if not os.path.exists(folder):
os.makedirs(folder)
if arg.random_split or arg.split_by_file:
for phase in ['train', 'val', 'test']:
json_name = os.path.join(root_path, 'annotations/{}.json'.format(phase))
with open(json_name, 'w') as f:
if phase == 'train':
json.dump(train_dataset, f)
elif phase == 'val':
json.dump(val_dataset, f)
elif phase == 'test':
json.dump(test_dataset, f)
print('Save annotation to {}'.format(json_name))
else:
json_name = os.path.join(root_path, 'annotations/{}'.format(arg.save_path))
with open(json_name, 'w') as f:
json.dump(dataset, f)
print('Save annotation to {}'.format(json_name))
if __name__ == "__main__":
yolo2coco(arg)
3. Split Data Code
路径修改:需要把该代码的python文件和上面的data文件夹放在一起
将下方代码中label_txt_path 的data改成自己的data文件夹名字,即跟随我设置的data标注文件夹名,或者你自己设置的文件夹名。
str
是linux系统设置’/
’,windows系统设置为’\\
’
其它的自行看代码
str = '/'
#图像路径
label_txt_path = str + "data3":
import os
import random
def data_split(full_list, ratio, shuffle=False):
"""
数据集拆分: 将列表full_list按比例ratio(随机)划分为2个子列表sublist_1与sublist_2
"""
n_total = len(full_list)
offset = int(n_total * ratio)
if n_total == 0 or offset < 1:
return [], full_list
if shuffle:
random.shuffle(full_list)
train = full_list[:offset]
test = full_list[offset:]
return train, test
def get_path(path,path_ImageSets,str):
f_train=open(path + str +"train.txt",'w+')
f_val=open(path + str+"val.txt",'w+')
f_test=open(path + str+"test.txt",'w+')
f_train_ImageSets=open(path_ImageSets + str +"train.txt",'w+')
f_val_ImageSets=open(path_ImageSets + str +"val.txt",'w+')
f_test_ImageSets=open(path_ImageSets + str +"test.txt",'w+')
for i in train:
filepath = img_filedir + str +i + b
dir = filepath + '\n'
#print(dir)
dir_ImageSets = i + '\n'
#print(dir_ImageSets)
# 把dir写到.txt文本里面
f_train.writelines(dir)
f_train_ImageSets.writelines(dir_ImageSets)
for j in test:
filepath = img_filedir + str + j + b
dir = filepath + '\n'
#print(dir)
# 把dir写到.txt文本里面
dir_ImageSets = j + '\n'
#print(dir_ImageSets)
f_val.writelines(dir)
f_val_ImageSets.writelines(dir_ImageSets)
f_test.writelines(dir)
f_test_ImageSets.writelines(dir_ImageSets)
f_train.close()
f_train_ImageSets.close()
f_val.close()
f_val_ImageSets.close()
f_test.close()
f_test_ImageSets.close()
str = '/'
#图像路径
label_txt_path = str + "data3"
images_path = label_txt_path + str+ "images"
images_name_path = label_txt_path + str + "ImageSets"
#train_test 划分比例
ratio = 0.1
#train_test 是否随机划分
shuffle = False
#用getcwd()获取当前目录
filedir = os.getcwd()
print(filedir)
img_filedir = filedir + images_path
#获取目录列表
filenames=os.listdir(img_filedir)
#for循环
list = []
for filename in filenames:
a,b = os.path.splitext(filename)
#a = int(a)
list.append(a)
list.sort()
#print(list)
train,test = data_split(list,ratio= ratio,shuffle = shuffle)
#print('train=',train)
#print('test=',test)
#以写的方式打开一个文本
path = filedir + label_txt_path
path_ImageSets = filedir + images_name_path
get_path(path,path_ImageSets,str)
Conclusion
暂时没有
标签:img,voc,yolo,train,split,test,path,txt,标注 来源: https://blog.csdn.net/m0_47646169/article/details/121587131