其他分享
首页 > 其他分享> > 采用邻接矩阵形式村出土,进行图的深度优先搜索并输出结果。

采用邻接矩阵形式村出土,进行图的深度优先搜索并输出结果。

作者:互联网

具体内容:

        采用邻接矩阵形式村出土,进行图的深度优先搜索并输出结果

算法分析

     用邻接矩阵存储图首先定义图的邻接矩阵存储结构,其中一维数组vertexs用来表示与顶点有关的信息,二维数组arcs用来表示图中顶点之间的关系。之后要初始化邻接矩阵,初始化顶点个数以及边的个数,输入数据并且添加权值然后输出矩阵。深度优先搜索然后遍历,最后输出搜索遍历后的顺序。深度优先遍历类似于树的先根遍历,是树先根遍历的推广。深度优先遍历是个递归过程,所以这个算法可以用递归实现。从某个结点v出发,进行优先遍历图的算法采用递归的形式说明如下:1设置访问标识数组并初始化标识数组。2若访问过顶点,则该标识设置为1,并输出当前顶点。3若某个顶点没有被访问过,则继续进行遍历此顶点。4继续找下一个邻接点,递归递归进行遍历,直到所有顶点都被访问。

使用c语言,其中设置了以下函数

函数

void CreateUDN(GraphType& G)

int LocateVex(GraphType G, char v)

void printGraph(GraphType G)

void DepthFirshSearch(GraphType G, int v)

void Dfs(GraphType G)

程序流程图

代码

#include <stdio.h>
#include<stdlib.h>
#define MAX 9

typedef struct
{
	char vertexs[MAX];
	int arcs[MAX][MAX];
	int vexnum, arcnum;
}GraphType;
int visited[MAX];
void printGraph(GraphType G);
int LocateVex(GraphType G, char v);
void CreateUDN(GraphType& G)
{
	G.vexnum = 8;						//输入总顶点数和边数
	G.arcnum = 9;
	G.vertexs[0] = 'v1';					//输入顶点信息
	G.vertexs[1] = 'v2';
	G.vertexs[2] = 'v3';
	G.vertexs[3] = 'v4';
	G.vertexs[4] = 'v5';
	G.vertexs[5] = 'v6';
	G.vertexs[6] = 'v7';
	G.vertexs[7] = 'v8';

	for (int i = 0; i < G.vexnum; i++)			//初始化邻接矩阵为极大值
	{
		for (int j = 0; j < G.vexnum; j++)
		{
			G.arcs[i][j] = 0;
		}
	}

	//输入并建立边,由于是无向图,故一条边需要建立两次
	int i, j;
	i = LocateVex(G, 'v1');
	j = LocateVex(G, 'v2');
	G.arcs[i][j] = G.arcs[j][i] = 1;
	i = LocateVex(G, 'v1');
	j = LocateVex(G, 'v3');
	G.arcs[i][j] = G.arcs[j][i] = 1;
	i = LocateVex(G, 'v2');
	j = LocateVex(G, 'v4');
	G.arcs[i][j] = G.arcs[j][i] = 1;
	i = LocateVex(G, 'v2');
	j = LocateVex(G, 'v5');
	G.arcs[i][j] = G.arcs[j][i] = 1;
	i = LocateVex(G, 'v5');
	j = LocateVex(G, 'v8');
	G.arcs[i][j] = G.arcs[j][i] = 1;
	i = LocateVex(G, 'v4');
	j = LocateVex(G, 'v8');
	G.arcs[i][j] = G.arcs[j][i] = 1;
	i = LocateVex(G, 'v3');
	j = LocateVex(G, 'v6');
	G.arcs[i][j] = G.arcs[j][i] = 1;
	i = LocateVex(G, 'v3');
	j = LocateVex(G, 'v7');
	G.arcs[i][j] = G.arcs[j][i] = 1;
	i = LocateVex(G, 'v6');
	j = LocateVex(G, 'v7');
	G.arcs[i][j] = G.arcs[j][i] = 1;

	//打印图的邻接矩阵
	printGraph(G);
}

//确定顶点在顶点表数组中的下边,并返回
int LocateVex(GraphType G, char v)
{
	for (int i = 0; i < G.vexnum; i++)
	{
		if (G.vertexs[i] == v)
		{
			return i;
		}
	}
}
//输出打印
void printGraph(GraphType G)
{
	for (int i = 0; i < G.vexnum; i++)
	{
		printf("v%d :", i + 1);

		for (int j = 0; j < G.vexnum; j++)
		{
			printf("%d ", G.arcs[i][j]);
		}
		printf("\n");
	}
}

void DepthFirshSearch(GraphType G, int v)
{
	int vj;
	printf("v%d\t", v+1);
	visited[v] = 1;
	for (vj = 0; vj < MAX; vj++)
	{
		if (!visited[vj] && G.arcs[v][vj]== 1)
		{
			DepthFirshSearch(G, vj);
		}
	}
}

void Dfs(GraphType G)
{
	int v;
	for (v = 0; v < G.vexnum; v++)
	{
		visited[v] = 0;
	}
	for (v = 0; v < G.vexnum; v++)
	{
		if (!visited[v])
			DepthFirshSearch(G, v);
	}
}
int main()
{
	GraphType G;
	CreateUDN(G);
	Dfs(G);
}

 

标签:优先,arcs,int,LocateVex,GraphType,邻接矩阵,搜索,void,vertexs
来源: https://blog.csdn.net/floruitshow/article/details/121587295