PCL二维ICP配准
作者:互联网
针对二维数据配准,需要控制的是变换矩阵的估计,一个旋转,两个平移为3D参数。更改ICP默认的估计变换矩阵的方法即可,代码中使用TransformationEstimationLM
方法并且通过
te->setWarpFunction (warp_fcn);
控制点云为3D变换。
setWarpFunction默认为6D变换
代码如下:
#include <pcl/console/parse.h>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/registration/icp.h>
#include <pcl/registration/icp_nl.h>
#include <pcl/registration/transformation_estimation_lm.h>
#include <pcl/registration/warp_point_rigid_3d.h>
#include <string>
#include <iostream>
#include <fstream>
#include <vector>
typedef pcl::PointXYZ PointType;
typedef pcl::PointCloud<PointType> Cloud;
typedef Cloud::ConstPtr CloudConstPtr;
typedef Cloud::Ptr CloudPtr;
int
main (int argc, char **argv)
{
double dist = 0.05;
pcl::console::parse_argument (argc, argv, "-d", dist);
double rans = 0.05;
pcl::console::parse_argument (argc, argv, "-r", rans);
int iter = 50;
pcl::console::parse_argument (argc, argv, "-i", iter);
std::vector<int> pcd_indices;
pcd_indices = pcl::console::parse_file_extension_argument (argc, argv, ".pcd");
CloudPtr model (new Cloud);
if (pcl::io::loadPCDFile (argv[pcd_indices[0]], *model) == -1)
{
std::cout << "Could not read file" << std::endl;
return -1;
}
std::cout << argv[pcd_indices[0]] << " width: " << model->width << " height: " << model->height << std::endl;
std::string result_filename (argv[pcd_indices[0]]);
result_filename = result_filename.substr (result_filename.rfind ("/") + 1);
pcl::io::savePCDFile (result_filename.c_str (), *model);
std::cout << "saving first model to " << result_filename << std::endl;
Eigen::Matrix4f t (Eigen::Matrix4f::Identity ());
for (size_t i = 1; i < pcd_indices.size (); i++)
{
CloudPtr data (new Cloud);
if (pcl::io::loadPCDFile (argv[pcd_indices[i]], *data) == -1)
{
std::cout << "Could not read file" << std::endl;
return -1;
}
std::cout << argv[pcd_indices[i]] << " width: " << data->width << " height: " << data->height << std::endl;
pcl::IterativeClosestPointNonLinear<PointType, PointType> icp;
boost::shared_ptr<pcl::registration::WarpPointRigid3D<PointType, PointType> > warp_fcn
(new pcl::registration::WarpPointRigid3D<PointType, PointType>);
// Create a TransformationEstimationLM object, and set the warp to it
boost::shared_ptr<pcl::registration::TransformationEstimationLM<PointType, PointType> > te (new pcl::registration::TransformationEstimationLM<PointType, PointType>);
te->setWarpFunction (warp_fcn);
// Pass the TransformationEstimation objec to the ICP algorithm
icp.setTransformationEstimation (te);
icp.setMaximumIterations (iter);
icp.setMaxCorrespondenceDistance (dist);
icp.setRANSACOutlierRejectionThreshold (rans);
icp.setInputTarget (model);
icp.setInputSource (data);
CloudPtr tmp (new Cloud);
icp.align (*tmp);
t = t * icp.getFinalTransformation ();
pcl::transformPointCloud (*data, *tmp, t);
std::cout << icp.getFinalTransformation () << std::endl;
*model = *data;
std::string result_filename (argv[pcd_indices[i]]);
result_filename = result_filename.substr (result_filename.rfind ("/") + 1);
pcl::io::savePCDFileBinary (result_filename.c_str (), *tmp);
std::cout << "saving result to " << result_filename << std::endl;
}
return 0;
}
来源:PCL官方示例
标签:include,PCL,ICP,配准,argv,pcl,icp,pcd,Cloud 来源: https://blog.csdn.net/com1098247427/article/details/120698287